

REGIONE UMBRIA

PROVINCIA DI PERUGIA

COMUNE DI MASSA MARTANA

INTERVENTI PER IL CONSOLIDAMENTO DELLA RUPE DI MASSA MARTANA

OPERA:

COMPLETAMENTO DEGLI INTERVENTI IN PARETE E DEL CIGLIO SUPERIORE NEL TRATTO COMPRESO TRA VIA DELLE PIAGGE E VIA DEL MATTATOIO VECCHIO

DESCRIZIONE:

PROGETTO ESECUTIVO

PROGETTISTI:

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti

COLLABORATORI:

IAG PROGETTI STUDIO ASSOCIATO

dott. arch. Andrea Balletti

dott. ing. Vincenzo Mario Cavallaro

dott. ing. Federica Ferrotti dott. arch Andrea Sabbatini

info@iagprogetti.it

THESIS ENGINEERING

dott. ing. Elia Comastri dott. ing. Federica Forlani tesi@studiothesis.it

SGA STUDIO GEOLOGI ASSOCIATI

dott. geol. Luciano Faralli dott. geol. Nello Gasparri dott. geol. Riccardo Piccioni infostudiogeologiassociati.eu REGIONE UMBRIA:

TAVOLA:

RELAZIONE DEL PROGETTO DELLE STRUTTURE:

RELAZIONE ILLUSTRATIVA SUI MATERIALI RELAZIONE TECNICA ILLUSTRATIVA

RELAZIONE DI CALCOLO

RELAZIONE SULLE FONDAZIONI

RELAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL

PROGETTO STRUTTURALE

. Gen. Tipo o	doc Formato scala	C_RE	Controllato	2014_04	E0	Α	PE
						_	
0	SETT_2014	1° EMISSIONE	1° EMISSIONE			GF	СС
REVISIONE	DATA		DESCRIZIONE	DESCRIZIONE			APPROV.

Percorso server:K:\COMMESSE\2013\2013_04_RUPE_V_STRALCIO_REGIONE_UMBRIA\2_PROGETTAZIONE_CONSEGNA\02_PERMESSO_COSTRUIRE\RTI_01_2013_04_E0_A_PE.doc

REGIONE UMBRIA

Provincia di Perugia

COMUNE DI MASSA MARTANA

INTERVENTI PER IL CONSOLIDAMENTO DELLA RUPE DI MASSA MARTANA

COMPLETAMENTO DEGLI INTERVENTI IN PARETE E DEL CIGLIO SUPERIORE NEL TRATTO COMPRESO TRA VIA DELLE PIAGGE E VIA DEL MATTATOIO VECCHIO

RELAZIONE DEL PROGETTO DELLE STRUTTURE

Committente: REGIONE UMBRIA

Progettisti: prof. ing. Claudio Comastri (Capogruppo)

ing. Rodolfo Biondi

ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Massa Martana, Settembre 2014

INDICE

NC	RM	ATIVA DI RIFERIMENTO	10
1	С	ARICHI E SOVRACCARICHI	11
2	0	PERE IN CLS ARMATO	11
3	S	ISMICA	11
RE	LAZ	ZIONE TECNICA ILLUSTRATIVA	12
1	Р	REMESSA	13
2	D	ESCRIZIONE GENERALE DEL TIPO DI INTERVENTO	13
	2.1	CONSOLIDAMENTO PARIETALE	13
RE	LAZ	ZIONE ILLUSTRATIVA SUI MATERIALI	17
1	0	PERE IN CALCESTRUZZO ARMATO	18
	1.1	CALCESTRUZZO	18
	1.2	ACCIAIO DA CEMENTO ARMATO	18
2	Α	CCIAIO PER STRUTTURE METALLICHE E STRUTTURE COMPOSTE .	18
3	T	IRANTI	19
RE	LAZ	ZIONE DI CALCOLO	20
1	Р	REMESSA	21
2	D	ESCRIZIONE DEL CODICE DI CALCOLO	24
Мι	JRO	TIPOLOGIA E - TRATTO 1	27
3		ERIFICHE STR MURI CON FONDAZIONI PROFONDE E PARETI NCORATE	27
4	S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	28
5	Α	NALISI DEI CARICHI	29
6	M	IODELLO 1: FASE ATTIVA DEI TIRANTI	33
	6.1	SCHEMA DI CALCOLO DEL MURO	33
	6.2	COMBINAZIONI DI CARICO	33
	6.3	RISULTATI DELL'ANALISI	34
	6.4	RAPPRESENTAZIONE GRAFICA	35
7	M	ODELLO 2: FASE PASSIVA DEL TIRANTE	38
	7.1	SCHEMA DI CALCOLO DEL MURO	38
	7.2	COMBINAZIONI DI CARICO	38
	7.3	RISULTATI DELL'ANALISI	38

7.4	RAPPRESENTAZIONE GRAFICA	39
8 8	SOLLECITAZIONI DI VERIFICA	40
9 V	'ERIFICA ELEMENTI STRUTTURALI	41
9.1	PALO	41
9.2	PARETE BASE	43
9.3	PARETE SOMMITA'	44
9.4	PLATEA	46
9.5	TIRANTE DYWIDAG	47
MURO	TIPOLOGIA E - TRATTO 2	47
	'ERIFICHE STR MURI CON FONDAZIONI PROFONDE E PARETI NCORATE	47
11 S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	47
12 A	NALISI DEI CARICHI	49
13 N	MODELLO 1: FASE ATTIVA DEI TIRANTI	51
13.1	SCHEMA DI CALCOLO DEL MURO	51
13.2	COMBINAZIONI DI CARICO	51
13.3	RISULTATI DELL'ANALISI	52
13.4	RAPPRESENTAZIONE GRAFICA	53
14 N	MODELLO 2: FASE PASSIVA DEL TIRANTE	56
14.1	SCHEMA DI CALCOLO DEL MURO	56
14.2	COMBINAZIONI DI CARICO	56
14.3		
14.4	RAPPRESENTAZIONE GRAFICA	57
15 S	OLLECITAZIONI DI VERIFICA	58
16 V	'ERIFICA ELEMENTI STRUTTURALI	
16.1	PALO	59
16.2	PARETE BASE	61
16.3	PARETE SOMMITA'	62
16.4	PLATEA	64
16.5		
MURC	TIPOLOGIA E - TRATTO 3	65
17 S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	65
18 A	NALISI DEI CARICHI	67
10 N	MODELLO 1: FASE ATTIVA DELTIRANTI	69

1	9.1	SCHEMA DI CALCOLO DEL MURO	69
1	9.2	COMBINAZIONI DI CARICO	69
1	9.3	RISULTATI DELL'ANALISI	70
1	9.4	RAPPRESENTAZIONE GRAFICA	71
20	МО	DELLO 2: FASE PASSIVA DEL TIRANTE	73
2	0.1	SCHEMA DI CALCOLO DEL MURO	73
2	0.2	COMBINAZIONI DI CARICO	74
2	0.3	RISULTATI DELL'ANALISI	74
2	0.4	RAPPRESENTAZIONE GRAFICA	75
21	SO	LLECITAZIONI DI VERIFICA	77
22	VE	RIFICA ELEMENTI STRUTTURALI	78
2	2.1	PALO	78
2	2.2	PARETE BASE	80
2	2.3	PARETE SOMMITA'	81
2	2.4	PLATEA	82
2	2.5	SOLETTA A SBALZO	83
2	2.6	TIRANTE DYWIDAG	84
MUF	RO 1	TIPOLOGIA F – TRATTO 1	84
23	VE	RIFICHE MURI CON FONDAZIONI PROFONDE E PARETI NON	
	AN	CORATE	84
24	SC	HEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	86
25	AN	ALISI DEI CARICHI	87
26	МО	DELLO STRUTTURALE	89
27	SO	LLECITAZIONI DI VERIFICA	94
28	VEI	RIFICA ELEMENTI STRUTTURALI	95
	8.1	PALO	
	8.2	PARETE BASE	
	_	PARETE SOMMITA'	
		PLATEA	
		SOLETTA A SBALZO	
		TIPOLOGIA F – TRATTO 2	
29		HEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	
30		ALISI DEI CARICHI	
31	MO	DELLO STRUTTURALE	105

31.1	SCHEMA DI CALCOLO DEL MURO	105
31.2	COMBINAZIONI DI CARICO	105
31.3	RISULTATI DELL'ANALISI	105
31.4	RAPPRESENTAZIONE GRAFICA	106
32 S	OLLECITAZIONI DI VERIFICA	109
33 VI	ERIFICA ELEMENTI STRUTTURALI	109
33.1	PALO	109
33.2	PARETE	111
33.3	PLATEA	113
33.4	SOLETTA A SBALZO	114
MURO	TIPOLOGIA F – TRATTO 3	115
34 S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	115
35 AI	NALISI DEI CARICHI	116
36 M	ODELLO STRUTTURALE	118
31.5	SCHEMA DI CALCOLO DEL MURO	118
31.6	COMBINAZIONI DI CARICO	118
31.7	RISULTATI DELL'ANALISI	118
31.8	RAPPRESENTAZIONE GRAFICA	119
37 S	OLLECITAZIONI DI VERIFICA	120
38 VI	ERIFICA ELEMENTI STRUTTURALI	121
38.1	PALO	121
38.2	PARETE	123
38.3	PLATEA	124
MURO	TIPOLOGIA F – TRATTO 4	125
SOLET	TA A SBALZO SU MURO ESISTENTE SEZ. 55A - SEZ. 6	60125
39 M	URO ESISTENTE: INTERVENTO TIPO D	125
40 VI	ERIFICA ELEMENTI STRUTTURALI	127
41 C	APACITA' PORTANTE DEI PALI	129
MURI	DI CIGLIO	131
42 A i	NALISI PARETE	132
	ZIONE SULLE FONDAZIONI	
1 P/	ARAMETRIZZAZIONE GEOTECNICA DEI TERRENI	137
	ERIFICHE GEOTECNICHE MURI CON FONDAZIONI PROFONDE	

MUF	₹0	TIPOLOGIA E - TRATTO 1	1 4 1
3	S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	141
4	М	ODELLO 1: FASE ATTIVA DEI TIRANTI	142
4	.1	SCHEMA DI CALCOLO DEL MURO	142
4	.2	COMBINAZIONI DI CARICO	142
4	.3	RISULTATI DELL'ANALISI	143
4	.4	RAPPRESENTAZIONE GRAFICA	144
5	M	ODELLO 2: FASE PASSIVA DEL TIRANTE	145
5	.1	SCHEMA DI CALCOLO DEL MURO	145
5	.3	RISULTATI DELL'ANALISI	145
5	.4	RAPPRESENTAZIONE GRAFICA	
6		OLLECITAZIONI DI VERIFICA	
7	C	APACITA' PORTANTE DEI PALI	147
8	VI	ERIFICA ANCORAGGIO TIRANTE A TREFOLI	150
9	VI	ERIFICA ANCORAGGIO BARRE DYWIDAG	151
MUF	30	TIPOLOGIA E - TRATTO 2	151
10	S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	151
11	M	ODELLO 1: FASE ATTIVA DEI TIRANTI	152
1	1.1	SCHEMA DI CALCOLO DEL MURO	152
1	1.2	COMBINAZIONI DI CARICO	152
1	1.3	RISULTATI DELL'ANALISI	153
1	1.4	RAPPRESENTAZIONE GRAFICA	154
12	M	ODELLO 2: FASE PASSIVA DEL TIRANTE	155
1	2.1	SCHEMA DI CALCOLO DEL MURO	
1	2.2	COMBINAZIONI DI CARICO	155
1	2.3	RISULTATI DELL'ANALISI	
	2.4	RAPPRESENTAZIONE GRAFICA	
13		DLLECITAZIONI DI VERIFICA	
14	C	APACITA' PORTANTE DEI PALI	157
15	VI	ERIFICA ANCORAGGIO TIRANTE A TREFOLI	160
16	VI	ERIFICA ANCORAGGIO BARRE DYWIDAG	161
MUF	₹0	TIPOLOGIA E - TRATTO 3	161
17	S	CHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	161
18	М	ODELLO 1: FASE ATTIVA DEI TIRANTI	162

	18.1	SCHEMA DI CALCOLO DEL MURO	. 162
	18.2	COMBINAZIONI DI CARICO	. 162
	18.3	RISULTATI DELL'ANALISI	. 162
19) MO	DELLO 2: FASE PASSIVA DEL TIRANTE	163
	19.1	SCHEMA DI CALCOLO DEL MURO	. 163
	19.2	COMBINAZIONI DI CARICO	. 164
	19.3	RISULTATI DELL'ANALISI	
	19.4	RAPPRESENTAZIONE GRAFICA	
20		LLECITAZIONI DI VERIFICA	
21		PACITA' PORTANTE DEI PALI	
22	YEF	RIFICA ANCORAGGIO TIRANTE A TREFOLI	168
23		RIFICA ANCORAGGIO BARRE DYWIDAG	
ΜU	IRO T	TIPOLOGIA F – TRATTO 11	69
24	SCI	HEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	169
25	SOI	LLECITAZIONI DI VERIFICA	169
26	CAI	PACITA' PORTANTE DEI PALI	169
ΜU	RO T	TIPOLOGIA F – TRATTO 2	72
27	' SCI	HEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	172
28	SOI	LLECITAZIONI DI VERIFICA	172
29	CA	PACITA' PORTANTE DEI PALI	172
ΜU	IRO T		75
30) SCI	HEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI	175
		LLECITAZIONI DI VERIFICA	
		PACITA' PORTANTE DEI PALI	
		TPOLOGIA F – TRATTO 4	
		I CIGLIO	
		RIFICA DI RESISTENZA MICROPALI	
		ONE SINTETICA DEGLI ELEMENTI ESSENZIALI [TTO STRUTTURALE1	
1	PRI	EMESSA	180
2	CAI	RATTERISTICHE DEI MATERIALI	183
	2.1 C	CALCESTRUZZO	. 183
	22 A	ACCIAIO DA CEMENTO ARMATO	. 184

	2.3	ACCIAIO PER STRUTTURE METALLICHE E STRUTTURE COMPOSTE	184
	2.4	Barre tipo DYWIDAG:	184
	2.5	TIRANTI	185
3	A	APPROCCIO DI CALCOLO	185
	3.1	MURO TIPOLOGIA E	185
	3.2	MURO TIPOLOGIA F	186
4	N	MODELLO DI CALCOLO	186
	4.1	MURO TIPOLOGIA E	186
	4.2	MURO TIPOLOGIA F	187
5	N	MODELLAZIONE DEI MATERIALI	187
6	A	AZIONE SISMICA	188
	6.1	MURO TIPOLOGIA E	188
	6.2	MURO TIPOLOGIA F	188
7	C	COMBINAZIONI DI CARICO	189
	7.1	MURO TIPOLOGIA E	189
	7.2	MURO TIPOLOGIA F	190
8	F	RISHI TATI DELLE ANALISI	190

NORMATIVA DI RIFERIMENTO

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

1 CARICHI E SOVRACCARICHI

Decreto M.LL.PP. 14 Gennaio 2008: "Norme tecniche per le costruzioni"

Circolare 02 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008

2 OPERE IN CLS ARMATO

Decreto M.LL.PP. 14 Gennaio 2008: "Norme tecniche per le costruzioni"

Circolare 02 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008

3 SISMICA

Decreto M.LL.PP. 14 Gennaio 2008: "Norme tecniche per le costruzioni"

Circolare 02 febbraio 2009, n. 617 - Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008

Deliberazione Giunta Regionale n° 1111 del 3/10/2012 – Aggiornamento della classificazione sismica del territorio regionale dell'Umbria.

RELAZIONE TECNICA ILLUSTRATIVA

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti

1 PREMESSA

La presente relazione si inserisce nell'ambito del progetto esecutivo degli interventi di consolidamento parietale della rupe di Massa Martana; in particolare riguarda il completamento degli interventi in parete e del ciglio superiore nel tratto compreso tra via delle Piagge e via del Mattatoio Vecchio.

2 DESCRIZIONE GENERALE DEL TIPO DI INTERVENTO

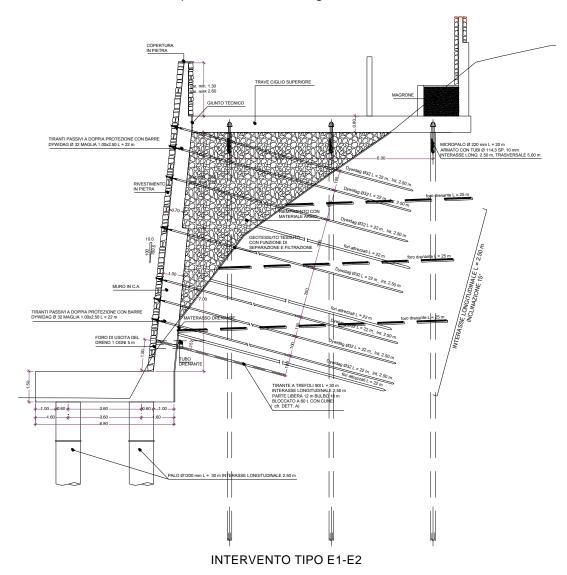
L'intervento di consolidamento, inserito all'interno di un articolato progetto di consolidamento della Rupe di Massa Martana e di recupero del centro storico, è concepito in maniera tale da conferire alle pareti Ovest e Nord della Rupe una continuità materiale e una maggiore stabilità di insieme.

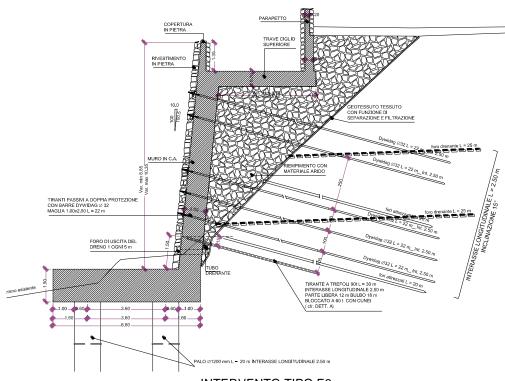
In via preliminare è necessario procedere al diserbo e al taglio della vegetazione, alla demolizione dei massi rocciosi instabili e alla pulizia della parete. L'intervento di consolidamento prevede l'introduzione di iniezioni a bassa pressione e l'inserimento di barre metalliche, tese a saturare gli spazi e le cavità, senza imporre pressioni esterne, per conferire alla rupe una maggiore stabilità di insieme. Tiranti passivi sono stati previsti per ancorare la parte esterna consolidata al corpo interno della rupe e canne drenanti sono introdotte per mantenere l'equilibrio idraulico del sistema.

2.1 CONSOLIDAMENTO PARIETALE

Gli interventi del presente appalto interessano un fronte di 112 m per un'altezza massima di 13 m. Gli interventi sono differenziati in due tipologie di consolidamento, denominate INTERVENTO TIPOLOGIA E ed INTERVENTO TIPOLOGIA F.

L' INTERVENTO TIPO E, si estende dalla sezione 43 alla sezione 53a.


L'intervento prevede la realizzazione di un muro in cemento armato, tirantato al piede da tiranti a trefoli di tipo attivo da 90 tonnellate e lunghezza 30 m, disposti ad interasse longitudinale di 2,5 m, il tiro di bloccaggio del tirante è di 60 t. Il muro è fondato su due file di pali del diametro di 120 cm, posti ad interasse trasversale di 3,60 m e longitudinale di 2,50 m; l'altezza massima del muro, escluso il parapetto, è h = 13,00 m. La platea di fondazione ha spessore 150 cm e larghezza 680 cm.


La parete in calcestruzzo viene ancorata alla rupe, con tiranti passivi realizzati con barre Dywidag da 32 mm, lunghezza 22 m ed interasse longitudinale di 2,50 m.

E' possibile individuare all'interno della tipologia E tre diversi tratti, che si differenziano tra loro per la lunghezza dei pali, il numero di file di tiranti passivi posti lungo la parete e lo spessore della parete:

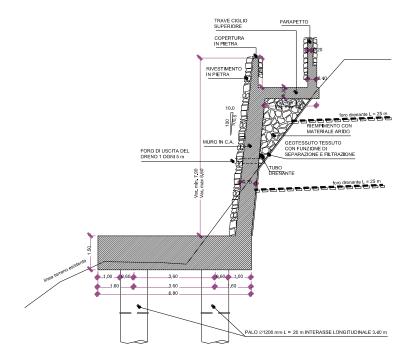
- <u>TRATTO E1</u> [sez. 43 – 49a]: Altezza massima parete 12,70 m, altezza media 11.20 m, lunghezza pali 30,00 m, tiranti passivi n.7 file, spessore parete 100 cm alla base e 70 cm in sommità;

- <u>TRATTO E2</u> [sez. 49a 51a]: Altezza massima parete 12,00 m, altezza media 10,50 m, lunghezza pali 30,00 m, tiranti passivi n.5 file, spessore parete 100 cm alla base e 70 cm in sommità;
- <u>TRATTO E3</u> [sez. 51a 53a]: Altezza massima parete 9,05 m,altezza media 8,30 m, lunghezza pali 20,00 m, tiranti passivi n.5 file, spessore parete 100 cm. Questa tipologia di muro presenta in sommità una soletta a sbalzo di spessore 70 cm e larghezza media 5,10 m.

INTERVENTO TIPO E3

Prima della costruzione del muro, la parete della rupe verrà consolidata con iniezioni ad alta pressione di malta cementizia realizzate mediante la predisposizione di canne in PVC valvolate di lunghezza 20 m e maglia 2,50x3,00, per la saturazione delle cavità e delle fratture.

L' INTERVENTO TIPO F, si estende dalla sezione 53a alla sezione 68a.


L'intervento prevede la realizzazione di un muro in cemento armato, fondato su due file di pali; in sommità è presente una soletta a sbalzo che costituisce il camminamento.

E' possibile individuare all'interno della tipologia F quattro diversi tratti, che si differenziano tra loro per diversi aspetti:

- <u>TRATTO F1</u> [sez. 53a 55a]: Altezza media parete 7,00 m, diametro pali 120 cm, lunghezza pali 20,00 m, interasse longitudinale pali 3,40 m, spessore parete 70 cm, larghezza media soletta a sbalzo 435 cm e spessore 50 cm;
- <u>TRATTO F2</u> [sez. 60 63a]: Altezza media parete 4,60 m, diametro pali 80 cm, lunghezza pali 15,00 m, interasse longitudinale 3,00, spessore parete 50 cm, larghezza media soletta a sbalzo 2.00 cm e spessore 40 cm;
- <u>TRATTO F3</u> [sez. 63a 66a]: Altezza media parete 2,90 m, diametro pali 80 cm, lunghezza pali 15,00 m interasse longitudinale 5,10 m, spessore parete 40 cm;
- <u>TRATTO F4</u> [sez. 66a 68a]: Altezza media parete 1,20 m, diametro pali 80 cm, lunghezza pali 15,00 m interasse longitudinale 3,60 m, spessore parete 40 cm, larghezza media soletta a sbalzo 100 cm e spessore 40 cm.

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

INTERVENTO TIPO F

Nel tratto compreso tra la sezione 55a e la sezione 60 è presente un muro già esistente, sul quale viene ancorata la soletta a sbalzo e il relativo parapetto.

Quando il muro è aderente alla parete della rupe si posiziona un materasso drenante con funzione di cassero; quando il muro si allontana dalla parete lo spazio viene riempito da materiale arido e la parete viene protetta con geotessuto con funzione filtrante e di separazione.

Il rivestimento in pietra esterno, dello spessore medio di 25 cm, viene sostenuto da cordoli rompitratta emergenti dalla struttura in cemento armato.

Progettista:

Prof. Ing. Claudio Comastri

dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti RELAZIONE ILLUSTRATIVA SUI MATERIALI

prof. ing. Claudio Comastri

1 OPERE IN CALCESTRUZZO ARMATO

1.1 CALCESTRUZZO

	TIPO	Resistenza a compression $e \\ f_{ckcube}[N/mm^2]$	Classe di esposizio pne	Classe di consistenza	Minimo contenuto di cemento [kg/m³]	Rapporto a/c	Contenuto massimo di cloruri
Sottofondi	C12/15	≥ 15					
Pali	C25/30	≥ 30	XC2	S4	300	<0.60	CI 0.2
Altre opere	C28/35	≥ 35	XC2	S4	320	<0.55	CI 0.2

Diametro massimo dell'inerte 25 mm.

1.2 ACCIAIO DA CEMENTO ARMATO

TIPO	Tensione caratteristica di snervamento $f_{yk}[\text{N/mm}^2]$	Allungamento (A _{gt}) _k [%]	Diametro del mandrino
B450C	≥ 450	≥ 7.50	per Φ<12 mm 4 Φ per 12<Φ<16mm 5 Φ per 16<Φ<25mm 8 Φ

Minimo ricoprimento ferro: 40 mm.

2 ACCIAIO PER STRUTTURE METALLICHE E STRUTTURE COMPOSTE

- Acciai laminati a caldo con profili a sezione cava ai sensi delle NORME UNI EN 10210-1:

TIPO	Tensione caratteristica di snervamento $f_{yk}[\text{N/mm}^2]$	Tensione caratteristica di rottura f _{yk} [N/mm²]	Spessore
S355H	355	510	t <= 40 mm
333311	335	490	40 mm < t <= 80 mm

- Barre tipo DYWIDAG:

Chiodi tipo DYWIDAG 950/1050 N/mm² a doppia protezione:

432 mm qualità dell'acciaio 950/1050 N/mm²

Carico di snervamento: 760 kN

Carico di rottura: 850 kN.

Ancoraggio definitivo e provvisorio

tipo di barra	diametro	qualità del	carico di	carico
	nominale	acciaio	snervamento	ultimo
	mm	N/mm²	kN	kN
	26.5	950/1050WR	525	580
THREADBAR® barra	32	950/1050WR	760	850
a filettatura continua	36	950/1050WR	960	1,070
destrorsa	40	950/1050WR	1,190	1,320
	47	950/1050WR	1,648	1,822

3 TIRANTI

Tiranti da 90 t di tipo permanente con trefoli $A_{nom} = 139 \text{ mm}^2$.

Miscele di iniezioni a base di boiacca acqua/cemento (a/c=0,50) additivata contro il ritiro.

Progettista:

Prof. Ing. Claudio Comastri

RELAZIONE DI CALCOLO

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

1 PREMESSA

La presente relazione si inserisce nell'ambito del progetto esecutivo degli interventi di consolidamento parietale della rupe di Massa Martana; in particolare riguarda il completamento degli interventi in parete e del ciglio superiore nel tratto compreso tra via delle Piagge e via del Mattatoio Vecchio.

L'intervento di consolidamento, inserito all'interno di un articolato progetto di consolidamento della Rupe di Massa Martana e di recupero del centro storico, è concepito in maniera tale da conferire alle pareti Ovest e Nord della Rupe una continuità materiale e una maggiore stabilità di insieme

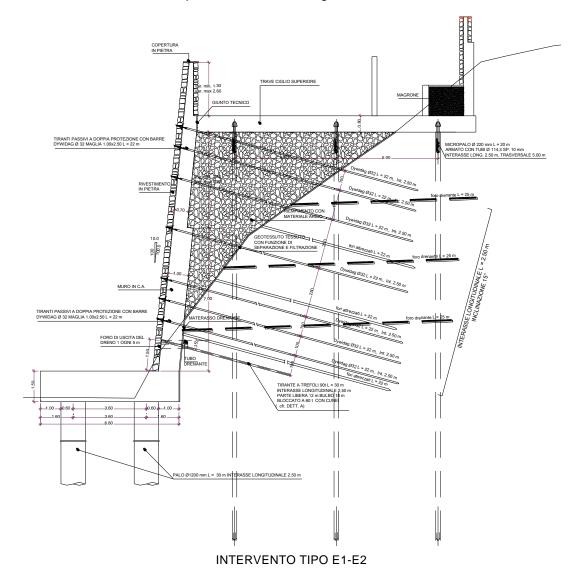
In via preliminare è necessario procedere al diserbo e al taglio della vegetazione, alla demolizione dei massi rocciosi instabili e alla pulizia della parete. L'intervento di consolidamento prevede l'introduzione di iniezioni a bassa pressione e l'inserimento di barre metalliche, tese a saturare gli spazi e le cavità, senza imporre pressioni esterne, per conferire alla rupe una maggiore stabilità di insieme. Tiranti passivi sono stati previsti per ancorare la parte esterna consolidata al corpo interno della rupe e canne drenanti sono introdotte per mantenere l'equilibrio idraulico del sistema.

Gli interventi del presente appalto interessano un fronte di 112 m per un'altezza massima di 13 m. Gli interventi sono differenziati in due tipologie di consolidamento, denominate INTERVENTO TIPOLOGIA E ed INTERVENTO TIPOLOGIA F.

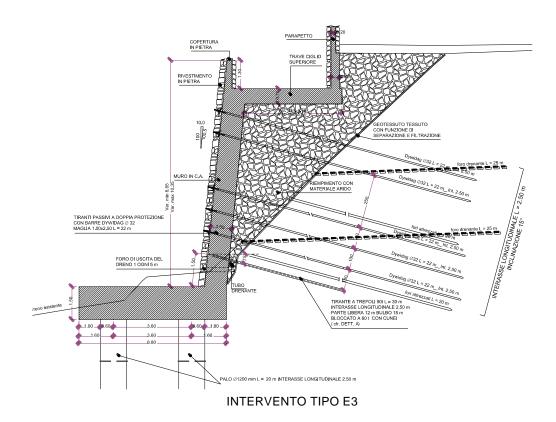
L' INTERVENTO TIPO E, si estende dalla sezione 43 alla sezione 53a.

L'intervento prevede la realizzazione di un muro in cemento armato, tirantato al piede da tiranti a trefoli di tipo attivo da 90 tonnellate e lunghezza 30 m, disposti ad interasse longitudinale di 2,5 m, il tiro di bloccaggio del tirante è di 60 t. Il muro è fondato su due file di pali del diametro di 120 cm, posti ad interasse trasversale di 3,60 m e longitudinale di 2,50 m; l'altezza massima del muro, escluso il parapetto, è h = 13,00 m. La platea di fondazione ha spessore 150 cm e larghezza 680 cm.

La parete in calcestruzzo viene ancorata alla rupe, con tiranti passivi realizzati con barre Dywidag da 32 mm, lunghezza 22 m ed interasse longitudinale di 2,50 m.


E' possibile individuare all'interno della tipologia E tre diversi tratti, che si differenziano tra loro per la lunghezza dei pali, il numero di file di tiranti passivi posti lungo la parete e lo spessore della parete:

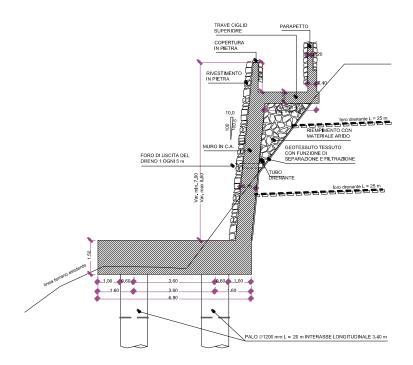
- <u>TRATTO E1</u> [sez. 43 49a]: Altezza massima parete 12,70 m, altezza media 11.20 m, lunghezza pali 30,00 m, tiranti passivi n.7 file, spessore parete 100 cm alla base e 70 cm in sommità:
- <u>TRATTO E2</u> [sez. 49a 51a]: Altezza massima parete 12,00 m, altezza media 10,50 m, lunghezza pali 30,00 m, tiranti passivi n.5 file, spessore parete 100 cm alla base e 70 cm in sommità;


prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

- <u>TRATTO E3</u> [sez. 51a – 53a]: Altezza massima parete 9,05 m,altezza media 8,30 m, lunghezza pali 20,00 m, tiranti passivi n.5 file, spessore parete 100 cm. Questa tipologia di muro presenta in sommità una soletta a sbalzo di spessore 70 cm e larghezza media 5,10 m.

dott. geol. Luca Domenico Venanti


Prima della costruzione del muro, la parete della rupe verrà consolidata con iniezioni ad alta pressione di malta cementizia realizzate mediante la predisposizione di canne in PVC valvolate di lunghezza 20 m e maglia 2,50x3,00, per la saturazione delle cavità e delle fratture.

L' INTERVENTO TIPO F, si estende dalla sezione 53a alla sezione 68a.

L'intervento prevede la realizzazione di un muro in cemento armato, fondato su due file di pali; in sommità è presente una soletta a sbalzo che costituisce il camminamento.

E' possibile individuare all'interno della tipologia F quattro diversi tratti, che si differenziano tra loro per diversi aspetti:

- <u>TRATTO F1</u> [sez. 53a 55a]: Altezza media parete 7,00 m, diametro pali 120 cm, lunghezza pali 20,00 m, interasse longitudinale pali 3,40 m, spessore parete 70 cm, larghezza media soletta a sbalzo 435 cm e spessore 50 cm;
- <u>TRATTO F2</u> [sez. 60 63a]: Altezza media parete 4,60 m, diametro pali 80 cm, lunghezza pali 15,00 m, interasse longitudinale 3,00, spessore parete 50 cm, larghezza media soletta a sbalzo 2.00 cm e spessore 40 cm;
- <u>TRATTO F3</u> [sez. 63a 66a]: Altezza media parete 2,90 m, diametro pali 80 cm, lunghezza pali 15,00 m interasse longitudinale 5,10 m, spessore parete 40 cm;
- <u>TRATTO F4</u> [sez. 66a 68a]: Altezza media parete 1,20 m, diametro pali 80 cm, lunghezza pali 15,00 m interasse longitudinale 3,60 m, spessore parete 40 cm, larghezza media soletta a sbalzo 100 cm e spessore 40 cm.

INTERVENTO TIPO F

Nel tratto compreso tra la sezione 55a e la sezione 60 è presente un muro già esistente, sul quale viene ancorata la soletta a sbalzo e il relativo parapetto.

Quando il muro è aderente alla parete della rupe si posiziona un materasso drenante con funzione di cassero; quando il muro si allontana dalla parete lo spazio viene riempito da materiale arido e la parete viene protetta con geotessuto con funzione filtrante e di separazione.

Il rivestimento in pietra esterno, dello spessore medio di 25 cm, viene sostenuto da cordoli rompitratta emergenti dalla struttura in cemento armato.

2 DESCRIZIONE DEL CODICE DI CALCOLO

Il codice di calcolo usato è WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033 Casalecchio di Reno (BO).

I tipi di analisi implementati nel sistema WinStrand sono diversi: uno statico e quattro di natura dinamica. In particolare si ha:

- 1. Analisi statica
- 2. Analisi dinamica via statica equivalente
- 3. Analisi dinamica modale con condensazione degli spostamenti
- 4. Analisi dinamica modale senza condensazione degli spostamenti
- 5. Analisi dinamica per strutture prefabbricate

Nel calcolo è stato utilizzato solo il metodo di analisi statica.

Il Sistema WinStrand è costituito da un'insieme di programmi tra loro correlati ed integrati.

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

L'insieme di tali programmi è organizzato in tre moduli, ognuno dei quali in grado di assolvere ad uno specifico segmento dell'iter progettuale, più una serie di operazioni opzionali a corredo:

- 1. Analisi Strutturale
- 2. Progetto-verifica degli Elementi in C.A.
- 3. Disegno esecutivo Armatura degli Elementi in C.A.

MODULO 1: Analisi Strutturale, attraverso una fase di Input e output interattiva grafica, esegue l'analisi strutturale ad elementi finiti, sia statica che dinamica, di strutture con geometria piana o spaziale, in C.A. e/o Acciaio, determinandone lo stato di deformazione, di sollecitazione e tensionale.

MODULO 2: Verifica Elementi in C.A., determina le armature e il tasso di lavoro dei materiali nei vari elementi strutturali in c.a. di cui si compone il modello strutturale attenendosi ai criteri di progetto definiti dal progettista prima dell'esecuzione del modulo. Tale modulo elabora i files di dati prodotti con il modulo 1 w e produce quelli di output da allegare alla relazione tecnica.

MODULO 3: Disegno Esecutivo Elementi in C.A., consente di realizzare le tavole dei disegni esecutivi di cantiere relativamente agli elementi in c.a. tenendo conto delle aree di ferro precedentemente computate con il modulo 2. Le tipologie di armature utilizzate rispecchiano criteri di progetto definiti dal progettista ma sono ulteriormente personalizzabili grazie all'alto livello di interattività grafica del programma.

Convenzioni adottate

Le convenzioni adottate per le sollecitazioni sugli elementi sono:

i = primo nodo trave

i = secondo nodo trave

Terna locale:

l'asse 1 (x locale) è diretto dal nodo i al nodo j

l'asse 2 (y locale) giace nel piano passante per i nodi i, j e k dove k è un nodo generato automaticamente dal programma:

per gli elementi verticali (normali al piano X-Y) il nodo k coincide con la proiezione del nodo i in direzione dell'asse Y globale ad una distanza di 200 m. In altre parole gli elementi verticali vengono generati con l'asse locale 2 parallelo all'asse globale Y. Per gli elementi non verticali il nodo k coincide con la proiezione del nodo i ad una distanza di 200 m secondo una direzione ortogonale all'asse locale 1 contenuta nel piano ortogonale ad X-Y e passante per i nodo i e j.

l'asse 3 (z locale) è ottenuto come prodotto vettoriale tra i due precedenti in modo da costituire assieme una terna destrogira.

Sforzi Normali

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Ni = Positivo indica compressione

Nj = Positivo indica trazione

Taglio nel piano x-y

Tixy =Positivo se concorde con l'asse y locale

Tjxy =Positivo se concorde con l'asse y locale

Taglio nel piano x-z

Tixz =Positivo se concorde con l'asse z locale

Tjxz =Positivo se concorde con l'asse z locale

Momenti torcenti

Miy =Positivo se l'asse vettore è concorde con l'asse x locale

Mjy =Positivo se l'asse vettore è concorde con l'asse x locale

Momenti nel piano x-y locale

Mixy =Positivo se l'asse vettore è concorde con l'asse z locale

Mjxy =Positivo se l'asse vettore è concorde con l'asse z locale

Momenti nel piano x-z locale

Mixy =Positivo se l'asse vettore è concorde con l'asse y locale

Mjxy =Positivo se l'asse vettore è concorde con l'asse y locale

Nota. I segni positivi dei momenti sono opposti nei due piani x-z e y-z locali.

Per l'esame completo e dettagliato delle convenzioni adottate si rimanda agli allegati tabulati, in cui queste sono evidenziate per tutti i componenti dell'analisi strutturale.

Le verifiche delle sezioni resistenti sono condotte con il modulo PREFLEX di Winstrand, le convenzioni sui segni dello sforzo normale sono i seguenti:

N negativo indica compressione

N positivo indica trazione.

MURO TIPOLOGIA E - TRATTO 1

3 VERIFICHE STR MURI CON FONDAZIONI PROFONDE E PARETI ANCORATE

Dal momento che si tratta di muri con fondazioni profonde e parete ancorata la verifica deve essere condotta seguendo le indicazioni riportate nella tabella successiva:

		STABILITA' GLOBALE MURO- TERRENO	1	C2: A2+M2+R2	
FONDAZIONI PROFONDE E PARETE ANCORATA		CARICO LIMITE DELLA PALIFICATA PER CARICHI ASSIALI			
	GEO	CARICO LIMITE DELLA PALIFICATA PER CARICHI TRASVERSALI	1	APP. 1: C1[STR]: A1+M1+R1 C2[GEO]: A2+M ₂ +R2	
		CARICO LIMITE DI SFILAMENTO PER CARICHI ASSIALI DI TRAZIONE			
	STR	RESISTENZA ELEMENTI STRUTTURALI (PALI E STRUTTURA DI COLLEGAMENTO)			
	GEO	SFILAMENTO ANCORAGGIO	2	C1:A1+M1+R3	

All'interno di questa relazione vengono condotte le verifiche di resistenza degli elementi strutturali, attraverso la combinazione 1 dell'approccio 1.

- VERIFICHE DI SICUREZZA
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali,
 - raggiungimento della resistenza degli elementi strutturali.

sono condotte secondo l'approccio 1: COMBINAZIONE 1 (A1+M1+R1).

I coefficienti parziali per le azioni e per gli effetti delle azioni sono riportati nella tabella 6.2.I delle NTC:

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Tabella 6.2.1 - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale % (o %)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	- W/33	0.9	1,0	1,0
Permanenti	Sfavorevole	701	1.1	1,3	1.0
Permanenti non strutturali (1)	Favorevole	IV-3	0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	Yoz	1,5	1,5	1.3
Variabili	Favorevole		0,0	0,0	0,0
Variabili	Sfavorevole	To:	1.5	1.5	1.3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portatti) stano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

Il coefficiente parziale della precompressione si assume γ_P = 1,00.

I coefficienti per i parametri geotecnici del terreno sono riportati nella tabella 6.2.II delle NTC 2008:

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE YM	(M1)	(M2) 1,25	
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	γ _{φ'}	1,0		
Coesione efficace	c' _k	γ _{e'}	1,0	1,25	
Resistenza non drenata	Cuk	Yeu	1,0	1,4	
Peso dell'unità di volume	γ	Yy	1,0	1,0	

4 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

Per effettuare il dimensionamento della struttura sono state realizzate due diverse modellazioni con il codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033 Casalecchio di Reno (BO).

In entrambi i casi la struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

- elementi verticali "pilastro": Sez. 1 Muro di base di sezione in ca 100x100 cm, sezione di sommità 100x70 cm;
- elementi orizzontali con vincolamento interno tipo "biella": Sez. 1 Tirante realizzato con trefoli in acciaio; Sez. 2 Tirante in Dywidag.

I modelli sono sottoposti ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

La differenza tra i due modelli sta nel vincolamento esterno:

1- in un primo modello è stata simulata la presenza della trave di fondazione, per mezzo di un elemento beam di sezione 6,80x1,50 m; la quale è vincolata all'esterno attraverso due aste di lunghezza 30 m, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della profondità. Per la valutazione delle caratteristiche geometriche della molla, che simulasse correttamente il comportamento del terreno, è stata imposta l'uguaglianza tra la sua deformazione assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella. Sul retro della parete sono inserite delle aste, vincolate all'esterno per mezzo di incastri e con comportamento a biella, che simulano la presenza dei tiranti passivi (barre dywidag) e del tirante formato da sei trefoli da 15 t ciascuno (90t). Al tirante da 90 tonnellate viene applicato un tiro permanente attivo di 60 t;

2- in un secondo modello non è simulata la trave di fondazione e i pali, ma soltanto la parete verticale che è vincolata alla base in modo da evitare movimenti di traslazione verticale, lasciando libera la traslazione orizzontale, tutti gli altri nodi del muro non presentano vincolamenti esterni. Questo modello viene usato per valutare la fase passiva di lavoro del tirante a trefoli posto alla base della parete.

Modellazione dei materiali

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato pali $E_c = 315\ 000\ daN/cm^2\ per\ Rck \ge 300\ daN/cm^2$

Cls armato fondazione e parete $E_c = 336~000~daN/cm^2~per~Rck \ge 350~daN/cm^2$

Acciaio $E_a = 2 100 000 \text{ daN/cm}^2$

Tipo di analisi

Le strutture sono state sottoposte ad una analisi statica con elementi tipo FRAME e alla verifica con il metodo degli stati limite.

5 ANALISI DEI CARICHI

Peso Proprio (P_1) :

Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di ca pari	2500 daN/m ³
a:	
Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di acciaio	7850 daN/m³
pari a:	

Spinte laterali del terreno sulla parete (P2)

Assumendo per il terreno a tergo della parete γ =1,8 t/m³; c = 0,0; ϕ = 30° ed in ipotesi di spinta a riposo (k₀ = 1 - sen ϕ = 0,50) si ricava un carico lineare con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: σ = γ · h · k₀.

z = 0	$\sigma = 0$
z = -1.60 m	σ = 1440 daN/mq
z = -3.20 m	σ = 2880 daN/mq
z = -5.70 m	σ = 5130 daN/mq
z = -8.20 m	σ = 7380 daN/mq
z = -9.30 m	σ = 8370 daN/mq
z = -10.35 m	σ = 9315 daN/mq
z = -11.40 m	σ = 10260 daN/mq
z = -13.50 m	σ = 12150 daN/mq

Peso Portato (P₃):

Carico permanente dovuto al rivestimento (pietra sp. 30 cm) considerando	2000 daN/m ³
un peso per unità di volume pari a	2000 dal\/111

Azioni sismiche $(P_4 - P_5 - P_7)$

Questo stralcio di completamento si inserisce all'interno di un più ampio progetto esecutivo riguardante gli interventi di consolidamento del dissesto parietale della Rupe di Massa Martana. I precedenti stralci sono stati eseguiti con la normativa in vigore al momento della realizzazione, ovvero D.M. 96.

Nelle progettazioni precedenti la accelerazione sismica considerata era pari ad $a_g = 0.19$ g. Per uniformità con gli interventi effettuati nei precedenti stralci, al fine di conferire all'intervento in progetto la stessa rigidezza dei precedenti si è stabilito di condurre il calcolo considerando una vita nominale della struttura di 50 anni e una classe d'uso III, ottenendo così una accelerazione al suolo $a_g = 0.189$ g, uguale a quella usata per la restante parte dell'intervento già realizzato.

С		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long.

	40 500700 01
	12,523762
	.2,020.02]

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

In questo caso dal momento che è impedito lo spostamento orizzontale della struttura, il terreno a tergo si suppone in condizioni k_0 .

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_n e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_v = \pm 0.5 \cdot k_h$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_{\sigma} = S_{S} \cdot S_{T} \cdot a_{\sigma} \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nel nostro caso il muro non è in grado di subire spostamenti relativi rispetto al terreno, pertanto:

- il coefficiente $\beta m = 1,00$;
- l'incremento di spinta dovuta al sisma va applicato a metà altezza del muro.

2		Zona sismica						
С		Categoria del suolo						
T2		Categoria topografica						
V _T >=	50 anni	Vita nominale della struttura						
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III						
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long. 12,523762 °]						
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione orizzontale						

T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]
k _V	0.161	[Coefficiente sismico per sisma verticale]

Valutazione dei pesi:

Parete in c.a. sp. 1,00 m W = 33,75 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mq W = 8,10 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale $S_{oizr} = 13,50 \text{ t al metro lineare di parete (in profondità)}$

Spinta verticale S_{vert} = 6,75 t al metro lineare di parete (in profondità)

Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

q_{oriz} = 1,00 t al metro lineare di parete (in profondità)

q_{vert} = 0,50 t al metro lineare di parete (in profondità)

Tiro attivo (P_6) :

Nel modello 1, si ipotizza il funzionamento attivo dei tiranti formati da trefoli da 90 t, applicando su di essi un tiro permanente attivo di 60 t.

Sovraccarico sommitale (P_8) :

Ipotizzando un sovraccarico, a monte, di 1000 daN/mq, in ipotesi di spinta a riposo ($k_0 = 1$ - sen $\phi = 0,50$) si ricava un carico lineare uniforme, dovuto al sovraccarico di :

S_{sovr} = 500 daN al metro lineare di parete (in profondità)

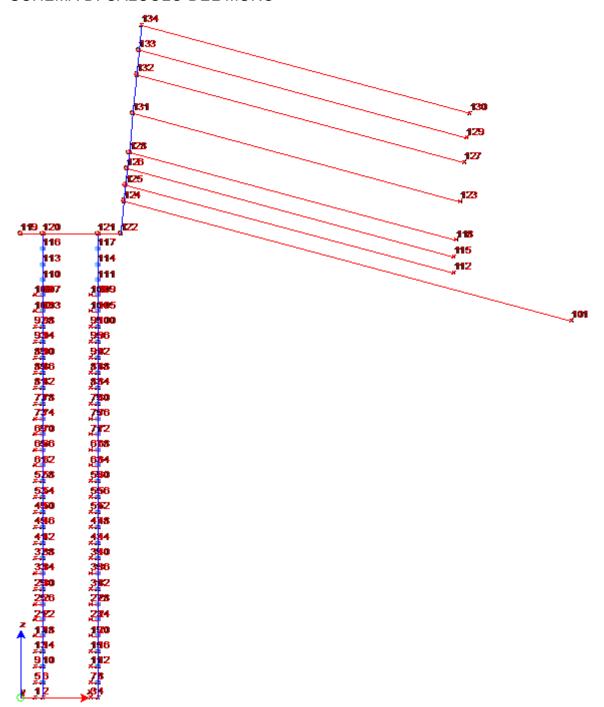

Applicato in sommità per i primi tre metri di altezza, combinato agli altri carichi con i coefficienti di combinazione riportati in tabella:

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	ψ 0j	ψ_{1j}	ψ_{2j}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0.7	0.5	0.3
Categoria C Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8

6 MODELLO 1: FASE ATTIVA DEI TIRANTI

6.1 SCHEMA DI CALCOLO DEL MURO

6.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	1,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	1,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	1,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	1,	1,	0,6

6.3 RISULTATI DELL'ANALISI

MODELLO_1_STR\TIRANTATO_MODELLO_1_STR.dt

Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 128	131	13809.5 [kg]	Comb. 1 Max asta	122	124	62332.3 [kg]	Comb. 3
Taglio piano 1-2	Min asta 124	125	-37364.2 [kg]	Comb. 3 Max asta	122	124	24338.2 [kg]	Comb. 3
Taglio piano 1-3	Min asta 128	131	-0.0 [kg]	Comb. 3 Max asta	128	131	-0.0 [kg]	Comb. 5
Momento torcente	Min asta 125	126	-0.0 [kgm]	Comb. 3 Max asta	126	128	-0.0 [kgm]	Comb. 5
Momento Flet. piano 1-2	Min asta 124	125	-75250.9 [kgm]	Comb. 5 Max asta	128	131	25638.1 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 122	124	-0.0 [kgm]	Comb. 3 Max asta	128	131	-0.0 [kgm]	Comb. 5

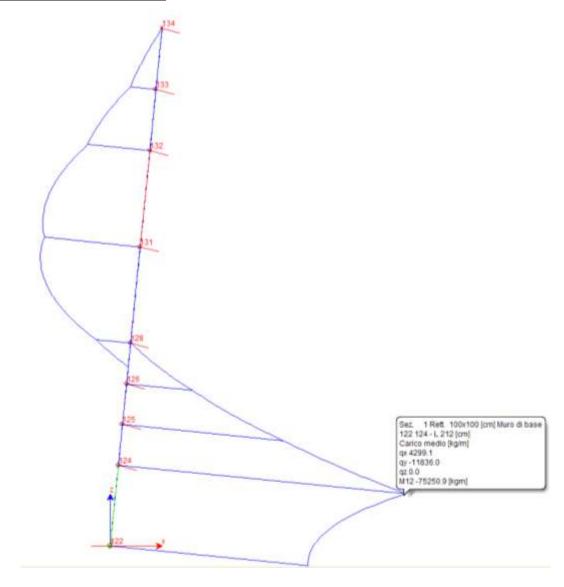
Pilastro Sezione numero 2 Rett. Muro di sommità

Sforzo normale	Min asta 133	134 584.3 [kg]	Comb. 1 Max asta	131 132	22936.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 131	132 -4082.8 [kg]	Comb. 5 Max asta	131 132	9037.7 [kg]	Comb. 3
Taglio piano 1-3	Min asta 133	134 -0.0 [kg]	Comb. 3 Max asta	133 134	-0.0 [kg]	Comb. 5
Momento torcente	Min asta 133	134 -0.0 [kgm]	Comb. 3 Max asta	133 134	-0.0 [kgm]	Comb. 5
Momento Flet. piano 1-2	Min asta 133	134 -0.0 [kgm]	Comb. 5 Max asta	131 132	25934.4 [kgm]	Comb. 3
Momento Flet, piano 1-3	Min asta 131	132 -0.0 [kgm]	Comb. 3 Max asta	133 134	0.0 [kgm]	Comb. 3

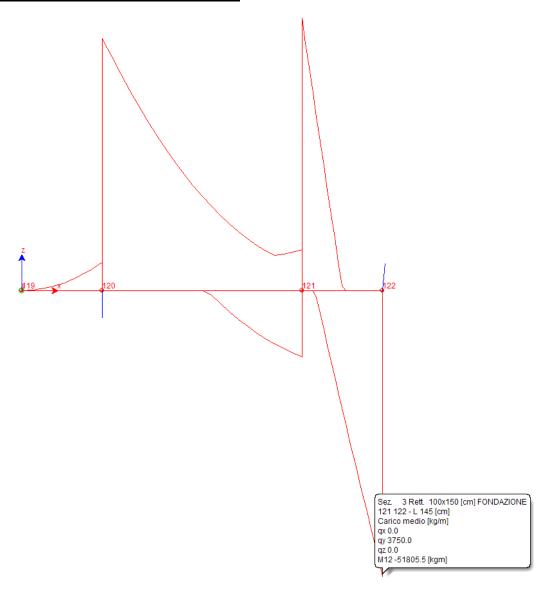
Pilastro Sezione numero 3 Circolare PALO

Sforzo normale	Min asta 116 120	15694.0 [kg]	Comb. 2 Max asta 4 8	176167.7 [kg]	Comb. 3
Taglio piano 1-2	Min asta 96 92	-10.0 [kg]	Comb. 3 Max asta 116 120	0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 121 117	-6041.5 [kg]	Comb. 3 Max asta 30 34	682.8 [kg]	Comb. 3
Momento torcente	Min asta 46 42	-0.0 [kgm]	Comb. 3 Max asta 121 117	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 96 92	-20.6 [kgm]	Comb. 3 Max asta 74 70	18.3 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 121 117	-44877.7 [kgm]	Comb. 3 Max asta 116 120	40402.6 [kgm]	Comb. 3

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

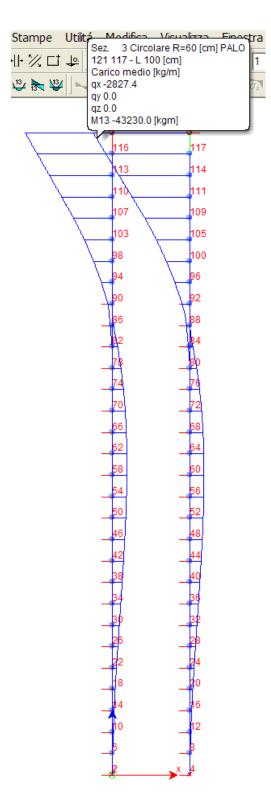

Sforzo normale	Min asta 132 127	-5969.6 [kg]	Comb. 3 Max asta	125 112	-1577.2 [kg]	Comb. 1
Taglio piano 1-2	Min asta 131 123	-0.0 [kg]	Comb. 3 Max asta	126 115	0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 126 115	0.0 [kg]	Comb. 1 Max asta	126 115	0.0 [kg]	Comb. 1
Momento torcente	Min asta 126 115	0.0 [kgm]	Comb. 1 Max asta	126 115	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 126 115	-0.0 [kgm]	Comb. 3 Max asta	131 123	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 126 115	-0.0 [kgm]	Comb. 1 Max asta	126 115	-0.0 [kgm]	Comb. 1

Trave Sezione numero 3 Rett. FONDAZIONE

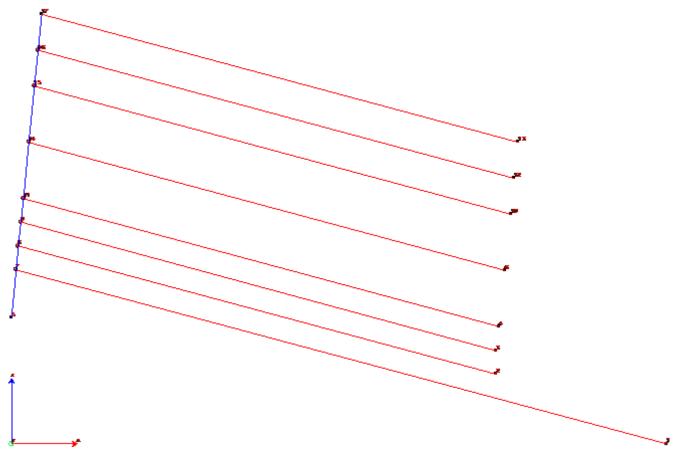

Sforzo normale	Min asta 119 12	0 0.0 [kg]	Comb. 1 Max asta 1	121 12	22 11689.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 119 12	0 -7068.8 [kg]	Comb. 3 Max asta 1	121 12	22 68543.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 120 12	1 -0.0 [kg]	Comb. 3 Max asta 1	119 12	20 0.0 [kg]	Comb. 3
Momento torcente	Min asta 121 12	2 -0.0 [kgm]	Comb. 3 Max asta 1	120 12	21 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 121 12	2 -51805.5 [kgm]	Comb. 5 Max asta 1	121 12	22 49292.8 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 120 12	1 -0.0 [kgm]	Comb. 3 Max asta 1	120 12	21 0.0 [kgm]	Comb. 3

6.4 RAPPRESENTAZIONE GRAFICA

Momento massimo sulla parete


Momento massimo sulla trave di fondazione

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici


dott. geol. Luca Domenico Venanti

Momento massimo sui pali

7 MODELLO 2: FASE PASSIVA DEL TIRANTE

7.1 SCHEMA DI CALCOLO DEL MURO

7.2 COMBINAZIONI DI CARICO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	0,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	0,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	0,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	0,	1,	0,6

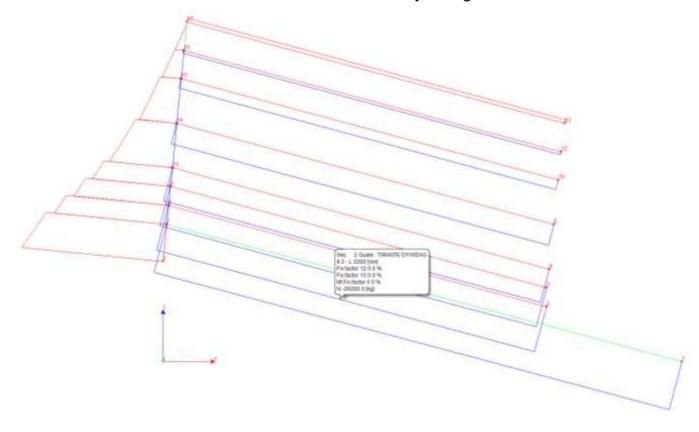
7.3 RISULTATI DELL'ANALISI

$MODELLO_1_STR \backslash TIRANTATO_MODELLO_2_STR.dt$

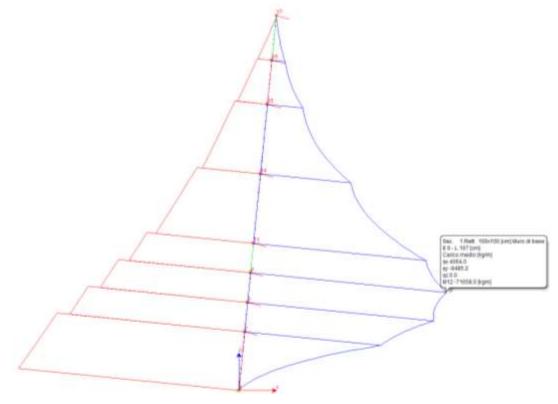
Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 11 14	13393.9 [kg]	Comb. 1 Max	asta 5 7	79803.2 [kg]	Comb. 3
Taglio piano 1-2	Min asta 11 14	-22074.5 [kg]	Comb. 3 Max	asta 5 7	37832.6 [kg]	Comb. 3
Taglio piano 1-3	Min asta 11 14	0.0 [kg]	Comb. 1 Max	asta 11 14	0.0 [kg]	Comb. 1
Momento torcente	Min asta 11 14	0.0 [kgm]	Comb. 1 Max	asta 11 14	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 9 11	-71058.0 [kgm]	Comb. 3 Max	asta 5 7	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 11 14	-0.0 [kgm]	Comb. 1 Max	asta 11 14	-0.0 [kgm]	Comb. 1

Pilastro Sezione numero 2 Rett. Muro di sommità


Sforzo normale	Min asta 16 17 -351.2 [kg]	Comb. 3 Max asta 14 15 21053.0 [kg] Comb. 3
Taglio piano 1-2	Min asta 14 15 -14666.3 [kg]	Comb. 3 Max asta 14 15 -458.9 [kg]	Comb. 6
Taglio piano 1-3	Min asta 16 17 0.0 [kg]	Comb. 1 Max asta 16 17 0.0 [kg]	Comb. 1
Momento torcente	Min asta 16 17 0.0 [kgm]	Comb. 1 Max asta 16 17 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 14 15 -32815.8 [kgr	n] Comb. 3 Max asta 16 17 -0.0 [kgm]	Comb. 4
Momento Flet. piano 1-3	3 Min asta 16 17 -0.0 [kgm]	Comb. 1 Max asta 16 17 -0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG


Sforzo normale	Min asta 8 2	-26200.0 [kg]	Comb. 3	Max asta 17 13	2166.0 [kg]	Comb. 3
Taglio piano 1-2	Min asta 14 6	-0.0 [kg]	Comb. 3	Max asta 114	0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 8 2	0.0 [kg]	Comb. 1	Max asta 8 2	0.0 [kg]	Comb. 1
Momento torcente	Min asta 8 2	0.0 [kgm]	Comb. 1	Max asta 8 2	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 11 4	-0.0 [kgm]	Comb. 3	Max asta 14 6	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	3 Min asta 8 2	-0.0 [kgm]	Comb. 1	Max asta 8 2	-0.0 [kgm]	Comb. 1

7.4 RAPPRESENTAZIONE GRAFICA

Sollecitazione di trazione massima del tirante dywidag

Diagrammi di sollecitazione del muro: sforzo normale e momento flettente della sezione maggiormente sollecitata

8 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 2.50 m si ha:

PALO	N [daN]	M [daNm]	T [daN]
Combo 3 Mod. 1	440420 [compres]	0	0
Combo 3 Mod.1	164745 [compres]	- 112250	-15105

PARETE BASE sp. 100 cm

PARETE	N [daN]	M [daNm]	T [daN]
Combo 3 Mod.1	62333 [compres]	- 44970	- 5514
Combo 5 Mod.1	48802 [compres]	- 75255	- 36851
Combo 3 Mod.2	44122 [compres]	- 71060	-13328

PARETE SOMMITA' sp. 70 cm

PARETE	N [daN]	M [daNm]	T [daN]
Combo 3 Mod.1	22936 [compres]	25090	- 3222
Combo 3 Mod.1	20766 [compres]	25935	209
Combo 3 Mod.2	21053 [compres]	- 32820	-14666

PLATEA DI FONDAZIONE

PLATEA	N [daN]	M [daNm]	T [daN]
Combo 3 Mod.1	11690 [compres]	49293	68543
Combo 5 Mod.1	7090 [compres]	-51810	53142

TIRANTE DYWIDAG

Considerando che le barre dywidag sono poste ad un interasse in direzione longitudinale di 2.50 m si ha:

DYWIDAG	N [daN]
Combo 3 Mod. 1	- 14925 [traz]
Combo 3 Mod. 2	- 65500 [traz]

9 VERIFICA ELEMENTI STRUTTURALI

9.1 PALO

Coordinate sezione in calcestruzzo

Vertice	X	У
1	60.00	0.00
2	58.85	-11.71
3	55.43	-22.96
4	49.89	-33.33
5	42.43	-42.43
6	33.33	-49.89
7	22.96	-55.43
8	11.71	-58.85
9	0.00	-60.00
10	-11.71	-58.85
11	-22.96	-55.43

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti -33.33 -49.89 12 13 -42.43 -42.43 14 -49.89 -33.33 15 -55.43 -22.96 16 -58.85 -11.71 17 -60.00 0.00 18 -58.85 11.71 19 -55.43 22.96 20 -49.89 33.33 21 -42.43 42.43 22 -33.33 49.89 23 -22.96 55.43 24 -11.71 58.85 25 0.00 60.00 26 11.71 58.85 27 22.96 55.43 28 33.33 49.89 29 42.43 42.43

Coordinate e diametro ferri di armatura

49.89 33.33

55.43 22.96

58.85 11.71

Ferro	Ø	X	У
1	22.0	53.15	0.00
2	22.0	51.04	14.69
3	22.0	44.87	28.20
4	22.0	35.15	39.42
5	22.0	22.67	47.44
6	22.0	8.42	51.62
7	22.0	-6.42	51.62
8	22.0	-20.67	47.44
9	22.0	-33.15	39.42
10	22.0	-42.87	28.20
11	22.0	-49.04	14.69
12	22.0	-51.15	0.00

22.0 -49.04 -14.69

30

31

32

13

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

- 14 22.0 -42.87 -28.20
- 15 22.0 -33.15 -39.42
- 16 22.0 -20.67 -47.44
- 17 22.0 -6.42 -51.62
- 18 22.0 8.42 -51.62
- 19 22.0 22.67 -47.44
- 20 22.0 35.15 -39.42
- 21 22.0 44.87 -28.20
- 22 22.0 51.04 -14.69

- Combinazione di Carico: 3 mod 1 a

Azione Sd Sr

N -164745.0 -372053.6 [kg]

Mx -112250.0 -253501.0 [kgm]

My 0.0 -0.0 [kgm]

Sd/Sr=0.44

- Combinazione di Carico: 3 mod 1 b

Azione Sd Sr

N -440420.0 -1896496.9 [kg]

Mx 0.0 -0.0 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.23

9.2 PARETE BASE

Coordinate sezione in calcestruzzo

Vertice x y

1 0.00 0.00

2 0.00 100.00

3 100.00 100.00

4 100.00 0.00

Coordinate e diametro ferri di armatura

Fer	ro ø	X	у
1	22.0	6.00	94.00
2	22.0	20.67	94.00

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi			
dott.	ing. Giuse	ppe Federici	
dott.	geol. Luca	Domenico Ver	anti
3	22.0	35.33	94.00
4	22.0	50.00	94.00
5	22.0	64.67	94.00
6	22.0	79.33	94.00
7	22.0	94.00	94.00
8	22.0	94.00	6.00
9	22.0	79.33	6.00
10	22.0	64.67	6.00

- Combinazione di Carico: 3 mod 1

50.00

35.33

20.67

6.00

6.00

6.00

6.00

6.00

Azione	Sd	Sr	
N	-62333.0	-282004.2	[kg]
Mx	-44970.0	-203451.3	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.22

11

12 13

14

22.0

22.0

22.0

22.0

- Combinazione di Carico: 3 mod 2

Azione	Sd	Sr	
N	-44122.0	-76072.6	[kg]
Mx	-71060.0	-122517.5	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.58

- Combinazione di Carico: 5 mod 1

Azione	Sd	Sr	
N	-48802.0	-80734.0	[kg]
Mx	-75255.0	-124495.6	[kgm]
Му	0.0	0.0	[kgm]

Sd/Sr=0.60

9.3 PARETE SOMMITA'

Coordinate sezione in calcestruzzo

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Vertice	X	у
1	0.00	0.00
2	0.00	70.00
3	100.00	70.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro ø X у 18.0 6.00 64.00 18.0 20.67 64.00 2 3 18.0 35.33 64.00 18.0 50.00 64.00 4 18.0 64.67 64.00 5 6 18.0 79.33 64.00 7 18.0 94.00 64.00 8 18.0 94.00 6.00 9 18.0 79.33 6.00 10 18.0 64.67 6.00 11 18.0 50.00 6.00 12 18.0 35.33 6.00 13 18.0 20.67 6.00 18.0 6.00 6.00 14

- Combinazione di Carico: 3 mod 1A

Azione	Sd	Sr	
N	-22936.0	-51071.4	[kg]
Mx	25090.0	55867.7	[kgm]
Му	0.0	0.0	[kgm]

0-1

Sd/Sr=0.45

A -! - -- -

- Combinazione di Carico: 3 mod 1B

Azione	Sd	Sr	
N	-20766.0	-42798.3	[kg]
Mx	25935.0	53451.5	[kgm]
My	0.0	0.0	[kgm]

Sd/Sr=0.49

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

- Combinazione di Carico: 3 mod 2

Azione	Sd	Sr	
N	-21053.0	-32305.0	[kg]
Mx	-32820.0	-50360.9	[kgm]
Му	0.0	0.0	[kgm]

Sd/Sr=0.65

9.4 PLATEA

Coordinate sezione in calcestruzzo

Vertice	x	у
1	0.00	0.00
2	0.00	150.00
3	100.00	150.00
4	100.00	0.00

Ferro ø

Coordinate e diametro ferri di armatura

у

	-		,
1	22.0	7.00	143.00
2	22.0	21.33	143.00
3	22.0	35.67	143.00
4	22.0	50.00	143.00
5	22.0	64.33	143.00
6	22.0	78.67	143.00
7	22.0	93.00	143.00
8	22.0	93.00	7.00
9	22.0	78.67	7.00
10	22.0	64.33	7.00
11	22.0	50.00	7.00
12	22.0	35.67	7.00
13	22.0	21.33	7.00
14	22.0	7.00	7.00

- Combinazione di Carico: 3 mod.1

Azione Sd Sr

N -11690.0 -38842.0 [kg]

prof. ing. Claudio Comastri
dott. ing. Rodolfo Biondi
dott. ing. Giuseppe Federici
dott. geol. Luca Domenico Venanti
Mx 49293.0 163784.2 [kgm]
My 0.0 -0.0 [kgm]

Sd/Sr=0.30

- Combinazione di Carico: 5 mod.1

AzioneSdSrN-7090.0-20743.9[kg]Mx-51810.0-151585.6[kgm]My0.00.0[kgm]

Sd/Sr=0.34

9.5 TIRANTE DYWIDAG

La verifica di resistenza del tirante dywidag si effettua con le formulazioni riportate nel §4.2.4.1.2 delle NTC08.

Dove:

 $N_{ED} = 655 \text{ kN}$ $N_{r,Rd} = A^* f_{yk}/\gamma_{M0} = 723 \text{ kN}$ $N_{ED}/N_{r,Rd} = 0.91 < 1.00$

MURO TIPOLOGIA E - TRATTO 2

10 VERIFICHE STR MURI CON FONDAZIONI PROFONDE E PARETI ANCORATE

All'interno di questa relazione vengono condotte le verifiche di resistenza degli elementi strutturali, attraverso la combinazione 1 dell'approccio 1: (A1+M1+R1).

11 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

Per effettuare il dimensionamento della struttura sono state realizzate due diverse modellazioni con il codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033 Casalecchio di Reno (BO).

In entrambi i casi la struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

- elementi verticali "pilastro": Sez. 1 - Muro di base di sezione in ca 100x100 cm, sezione in sommità 100x70 cm;

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

- elementi orizzontali con vincolamento interno tipo "biella": Sez. 1 - Tirante realizzato con trefoli in acciaio; Sez. 2 - Tirante in Dywidag.

I modelli sono sottoposti ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

La differenza tra i due modelli sta nel vincolamento esterno:

1- in un primo modello è stata simulata la presenza della trave di fondazione, per mezzo di un elemento beam di sezione 6,80x1,50 m; la quale è vincolata all'esterno attraverso due aste di lunghezza 30 m, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della profondità. Per la valutazione delle caratteristiche geometriche della molla, che simulasse correttamente il comportamento del terreno, è stata imposta l'uguaglianza tra la sua deformazione assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella. Sul retro della parete sono inserite delle aste, vincolate all'esterno per mezzo di incastri e con comportamento a biella, che simulano la presenza dei tiranti passivi (barre dywidag) e del tirante formato da sei trefoli da 15 t ciascuno (90t). Al tirante da 90 tonnellate viene applicato un tiro permanente attivo di 60 t;

2- in un secondo modello non è simulata la trave di fondazione e i pali, ma soltanto la parete verticale che è vincolata alla base in modo da evitare movimenti di traslazione verticale, lasciando libera la traslazione orizzontale, tutti gli altri nodi del muro non presentano vincolamenti esterni. Questo modello viene usato per valutare la fase passiva di lavoro del tirante a trefoli posto alla base della parete.

Modellazione dei materiali

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato pali $E_c = 315\ 000\ daN/cm^2\ per\ Rck \ge 300\ daN/cm^2$

Cls armato fondazione e parete $E_c = 336~000~daN/cm^2~per~Rck \ge 350~daN/cm^2$

Acciaio $E_a = 2 \, 100 \, 000 \, da \, N/cm^2$

Tipo di analisi

Le strutture sono state sottoposte ad una analisi statica con elementi tipo FRAME e alla verifica con il metodo degli stati limite.

INTERVENTO DI CONSOLIDAMENTO PARIETALE DELLA RUPE DI MASSA MARTANA – Completamento degli interventi in parete e del ciglio superiore nel tratto compreso tra Via delle Piagge e Via del Mattatoio vecchio

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

12 ANALISI DEI CARICHI

Peso Proprio (P₁):

Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di ca pari	2500 daN/m ³
a:	
Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di acciaio	7850 daN/m ³
pari a:	

Spinte laterali del terreno sulla parete (P_2)

Assumendo per il terreno a tergo della parete γ =1,8 t/m³; c = 0,0; ϕ = 30° ed in ipotesi di spinta a riposo (k₀ = 1 - sen ϕ = 0,50) si ricava un carico lineare con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: σ = γ · h · k₀.

z = 0	$\sigma = 0$
z = -10.75 m	σ = 9675 daN/mq

Peso Portato (P₃):

Carico permanente dovuto al rivestimento (pietra sp. 30 cm) considerando	2000 daN/m ³
un peso per unità di volume pari a	2000 dain/iii

Azioni sismiche $(P_4 - P_5 - P_7)$

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nel nostro caso il muro non è in grado di subire spostamenti relativi rispetto al terreno, pertanto:

- il coefficiente $\beta m = 1,00$;
- l'incremento di spinta dovuta al sisma va applicato a metà altezza del muro.

2	Zona sismica
С	Categoria del suolo

T2		Categoria topografica							
V _T >=	50 anni	Vita nominale della struttura							
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III							
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long. 12,523762 °]							
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione orizzontale							
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale							
S _T =	1.2	Coefficiente di amplificazione topografica							
S _S =	1.42	Coefficiente di amplificazione stratigrafica							
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito							
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito							
k _h	0.322	[Coefficiente sismico per sisma orizzontale]							
k _V	0.161	[Coefficiente sismico per sisma verticale]							

Valutazione dei pesi:

Parete in c.a. sp. 1,00 m alla base e 70 cm in sommità W = 21,25 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mq W = 6,00 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale $S_{oizr} = 9,00 \text{ t al metro lineare di parete (in profondità)}$

Spinta verticale S_{vert} = 4,50 t al metro lineare di parete (in profondità)

Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

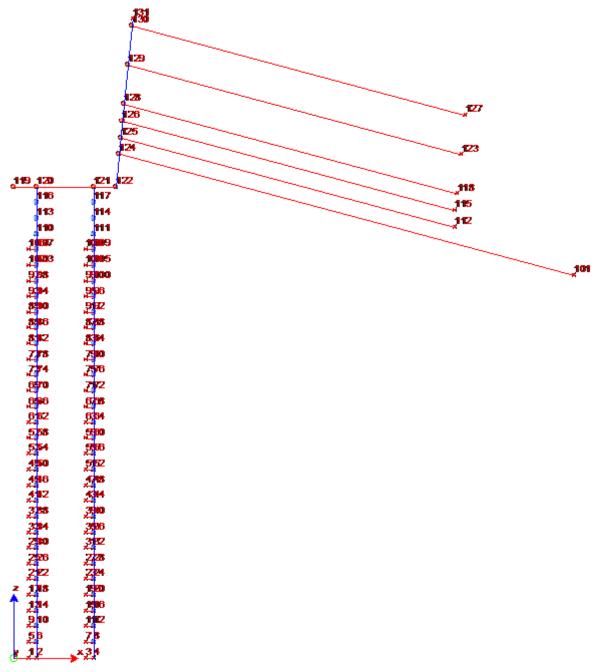
q_{oriz} = 0,90 t al metro lineare di parete (in profondità)

q_{vert} = 0,45 t al metro lineare di parete (in profondità)

Tiro attivo (P_6) :

Nel modello 1 si ipotizza il funzionamento attivo dei tiranti formati da trefoli da 90 t, applicando su di essi un tiro permanente attivo di 60 t.

Sovraccarico sommitale (P₈):


Ipotizzando un sovraccarico, a monte, di 1000 daN/mq, in ipotesi di spinta a riposo ($k_0 = 1$ - sen $\phi = 0,50$) si ricava un carico lineare uniforme, dovuto al sovraccarico di :

S_{sovr} = 500 daN al metro lineare di parete (in profondità)

Applicato in sommità per i primi tre metri di altezza.

13 MODELLO 1: FASE ATTIVA DEI TIRANTI

13.1 SCHEMA DI CALCOLO DEL MURO

13.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

dott. geol. Luca Domenico Venanti

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	1,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	1,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	1,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	1,	1,	0,6

13.3 RISULTATI DELL'ANALISI

 $TIPOLOGIA_E \ TRATTO_2 \ MODELLO_1_STR \ TIRANTATO_MODELLO_1_STR. dt$

Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 126 128	3 11301.6 [kg]	Comb. 1 Max asta	122 124	41974.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 124 125	5 -33188.6 [kg]	Comb. 6 Max asta	122 124	25187.1 [kg]	Comb. 3
Taglio piano 1-3	Min asta 126 128	3 -0.0 [kg]	Comb. 3 Max asta	126 128	-0.0 [kg]	Comb. 5
Momento torcente	Min asta 125 126	5 -0.0 [kgm]	Comb. 3 Max asta	126 128	-0.0 [kgm]	Comb. 5
Momento Flet. piano 1-2	Min asta 124 125	5 -80235.6 [kgm]	Comb. 5 Max asta	126 128	-7593.3 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 122 124	-0.0 [kgm]	Comb. 3 Max asta	126 128	-0.0 [kgm]	Comb. 5

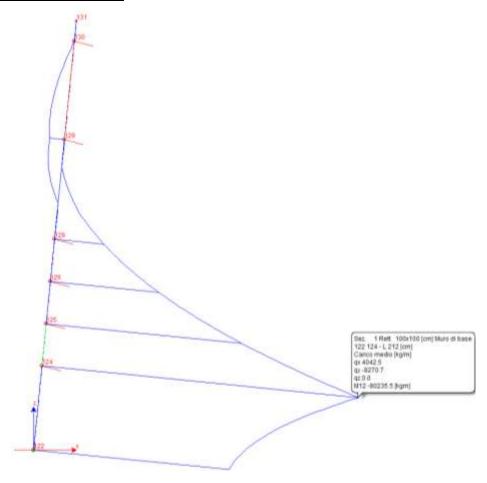
Pilastro Sezione numero 2 Rett. Muro di sommità

Sforzo normale	Min asta 130 131 0.0 [[kg] Comb. 3	Max asta 128 12	9 20208.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 128 129 -116	676.2 [kg] Comb. 6	Max asta 129 13	0 3432.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 130 131 -0.0	[kg] Comb. 3	Max asta 130 13	1 -0.0 [kg]	Comb. 5
Momento torcente	Min asta 130 131 -0.0	[kgm] Comb. 3	Max asta 129 13	0 -0.0 [kgm]	Comb. 5
Momento Flet. piano 1-2	Min asta 128 129 -125	527.5 [kgm] Comb. 5	Max asta 129 13	0 4223.7 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 128 129 -0.0	[kgm] Comb. 3	Max asta 130 13	1 0.0 [kgm]	Comb. 3

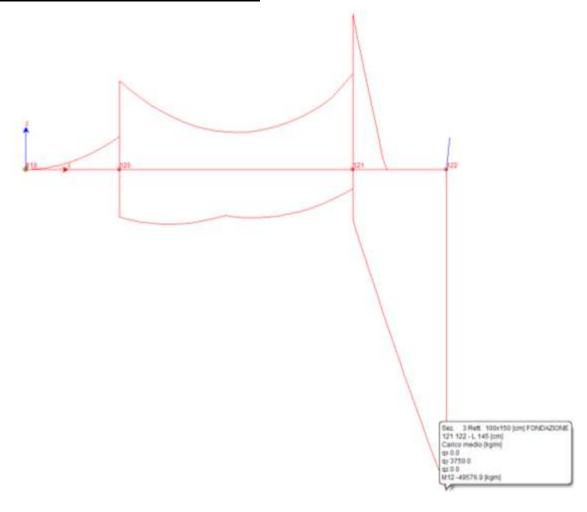
Pilastro Sezione numero 3 Circolare PALO

Sforzo normale	Min asta 116 120	6786.9 [kg]	Comb. 2 Max asta 4 8	168075.5 [kg]	Comb. 3
Taglio piano 1-2	Min asta 96 92	-2.2 [kg]	Comb. 3 Max asta 96 92	2.9 [kg]	Comb. 1
Taglio piano 1-3	Min asta 121 117	-1111.3 [kg]	Comb. 3 Max asta 121 117	1976.9 [kg]	Comb. 1
Momento torcente	Min asta 46 42	-0.0 [kgm]	Comb. 3 Max asta 121 117	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 74 70	-9.8 [kgm]	Comb. 1 Max asta 96 92	0.2 [kgm]	Comb. 1
Momento Flet. piano 1-3	Min asta 116 120	-11304.6 [kgm]	Comb. 1 Max asta 121 117	12303.4 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

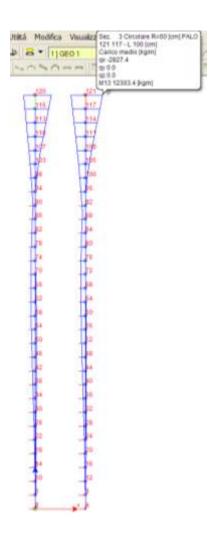

Sforzo normale	Min asta 130 127 -3824.4 [kg] Comb. 6 Max asta 125 112 1485.2 [kg]	Comb. 1
Taglio piano 1-2	Min asta 129 123 -0.0 [kg]	Comb. 3 Max asta 130 127 0.0 [kg]	Comb. 6
Taglio piano 1-3	Min asta 130 127 0.0 [kg]	Comb. 1 Max asta 130 127 0.0 [kg]	Comb. 1
Momento torcente	Min asta 130 127 0.0 [kgm]	Comb. 1 Max asta 130 127 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 130 127 -0.0 [kgm	Comb. 6 Max asta 129 123 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	3 Min asta 130 127 -0.0 [kgm] Comb. 1 Max asta 130 127 -0.0 [kgm]	Comb. 1

Trave Sezione numero 3 Rett. FONDAZIONE

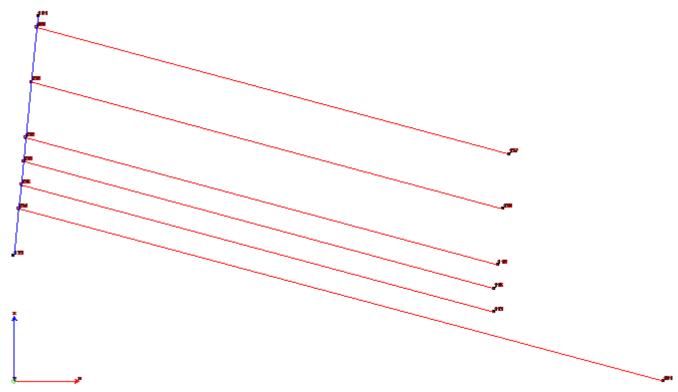

Sforzo normale	Min asta 121 12	2 -3865.7 [kg]	Comb. 1 Max asta	121	122	2056.7 [kg]	Comb. 3
Taglio piano 1-2	Min asta 120 12	1 -12150.6 [kg]	Comb. 2 Max asta	121	122	49046.5 [kg]	Comb. 3
Taglio piano 1-3	Min asta 120 12	1 -0.0 [kg]	Comb. 3 Max asta	119	120	0.0 [kg]	Comb. 3
Momento torcente	Min asta 121 12	2 -0.0 [kgm]	Comb. 3 Max asta	120	121	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 121 12	2 -49576.9 [kgm]	Comb. 6 Max asta	121	122	23971.8 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 120 12	1 -0.0 [kgm]	Comb. 3 Max asta	120	121	0.0 [kgm]	Comb. 3

13.4 RAPPRESENTAZIONE GRAFICA

Momento massimo sulla parete


Momento massimo sulla trave di fondazione

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici


dott. geol. Luca Domenico Venanti

Momento massimo sui pali

14 MODELLO 2: FASE PASSIVA DEL TIRANTE

14.1 SCHEMA DI CALCOLO DEL MURO

14.2 COMBINAZIONI DI CARICO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	0,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	0,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	0,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	0,	1,	0,6

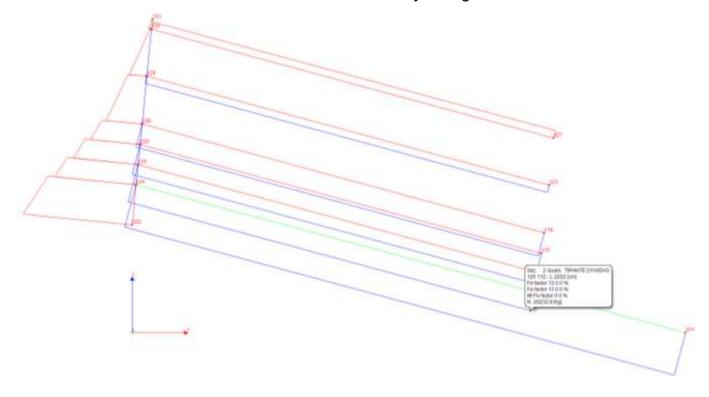
14.3 RISULTATI DELL'ANALISI

TIPOLOGIA_E\TRATTO_2\MODELLO_1_STR\TIRANTATO_MODELLO_2_STR.dt

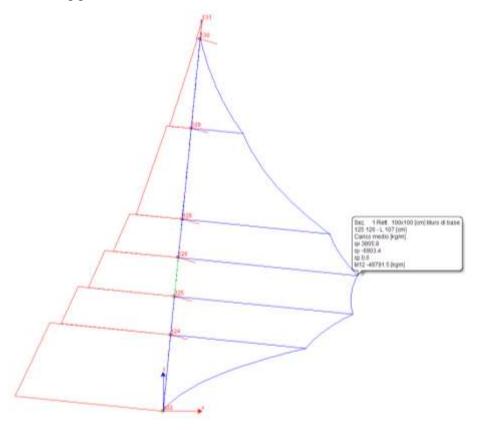
Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 126 128	12411.6 [kg]	Comb. 1 Max asta	122 124	57822.7 [kg]	Comb. 3
Taglio piano 1-2	Min asta 126 128	-11794.7 [kg]	Comb. 3 Max asta	122 124	28838.9 [kg]	Comb. 3
Taglio piano 1-3	Min asta 126 128	0.0 [kg]	Comb. 1 Max asta	126 128	0.0 [kg]	Comb. 1
Momento torcente	Min asta 126 128	0.0 [kgm]	Comb. 1 Max asta	126 128	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 126 128	-49791.5 [kgm]	Comb. 3 Max asta	122 124	-0.0 [kgm]	Comb. 6
Momento Flet. piano 1-3	3 Min asta 126 128	-0.0 [kgm]	Comb. 1 Max asta	126 128	-0.0 [kgm]	Comb. 1

Pilastro Sezione numero 2 Rett. Muro di sommità


Sforzo normale	Min asta 130 131	0.0 [kg]	Comb. 3 Max asta	128 12	9 19210.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 128 129	-16962.0 [kg]	Comb. 3 Max asta	130 13	1 35.4 [kg]	Comb. 3
Taglio piano 1-3	Min asta 130 131	0.0 [kg]	Comb. 1 Max asta	130 13	1 0.0 [kg]	Comb. 1
Momento torcente	Min asta 130 131	0.0 [kgm]	Comb. 1 Max asta	130 13	1 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 128 129	-41061.8 [kgm]	Comb. 3 Max asta	130 13	1 10.6 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 130 131	-0.0 [kgm]	Comb. 1 Max asta	130 13	1 -0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG


Sforzo normale	Min asta 125 11	2 -20232.9 [kg]	Comb. 3 Max asta	130 127	3940.4 [kg]	Comb. 3
Taglio piano 1-2	Min asta 129 12	3 -0.0 [kg]	Comb. 3 Max asta	128 118	0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 130 12	7 0.0 [kg]	Comb. 1 Max asta	130 127	0.0 [kg]	Comb. 1
Momento torcente	Min asta 130 12	7 0.0 [kgm]	Comb. 1 Max asta	130 127	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 128 11	8 -0.0 [kgm]	Comb. 3 Max asta	129 123	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 130 12	7 -0.0 [kgm]	Comb. 1 Max asta	130 127	-0.0 [kgm]	Comb. 1

14.4RAPPRESENTAZIONE GRAFICA

Sollecitazione di trazione massima del tirante dywidag

Diagrammi di sollecitazione del muro: sforzo normale e momento flettente della sezione maggiormente sollecitata

15 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 2.50 m si ha:

PALO	N [daN]	M [daNm]	T [daN]
Combo 3 Mod. 1	420188 [compres]	0	0
Combo 1 Mod.1	96320 [compres]	30762	5000

PARETE BASE sp. 100 cm

PARETE	N [daN]	M [daNm]	T [daN]
Combo 3 Mod.1	41975 [compres]	- 42020	2130
Combo 5 Mod.1	31825 [compres]	- 80240	- 33069
Combo 3 Mod.2	26367 [compres]	- 49795	-11800

PARETE SOMMITA' sp. 70 cm

PARETE	N [daN]	M [daNm]	T [daN]
Combo 3 Mod.1	20210 [compres]	-7595	-10895
Combo 5 Mod.1	18130 [compres]	-12530	-11621
Combo 3 Mod.2	19210 [compres]	- 41062	-16962

PLATEA DI FONDAZIONE

PLATEA	N [daN]	M [daNm]	T [daN]
Combo 3 Mod.1	2057 [compres]	23975	49047
Combo 6 Mod.1	-1524 [traz]	-49580	26170

TIRANTE DYWIDAG

Considerando che le barre dywidag sono poste ad un interasse in direzione longitudinale di 2.50 m si ha:

DYWIDAG	N [daN]
Combo 3 Mod. 2	- 50600 [traz]

16 VERIFICA ELEMENTI STRUTTURALI

16.1 PALO

Coordinate sezione in calcestruzzo

Vertice	X	У
1	60.00	0.00
2	58.85	-11.71
3	55.43	-22.96
4	49.89	-33.33
5	42.43	-42.43
6	33.33	-49.89
7	22.96	-55.43
8	11.71	-58.85
9	0.00	-60.00
10	-11.71	-58.85
11	-22.96	-55.43
12	-33.33	-49.89

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti 13 -42.43 -42.43 14 -49.89 -33.33 -55.43 -22.96 15 16 -58.85 -11.71 17 -60.00 0.00 18 -58.85 11.71 -55.43 22.96 19 20 -49.89 33.33 21 -42.43 42.43 22 -33.33 49.89

23 -22.96 55.43

24 -11.71 58.85 25 0.00 60.00

26 11.71 58.85

27 22.96 55.43

28 33.33 49.89

29 42.43 42.43

30 49.89 33.33

31 55.43 22.96

32 58.85 11.71

Coordinate e diametro ferri di armatura

Ferro ø X у 1 22.0 53.15 0.00 2 22.0 51.04 14.69 22.0 44.87 28.20 3 22.0 35.15 39.42 4 5 22.0 22.67 47.44 22.0 8.42 51.62 6 7 22.0 -6.42 51.62 8 22.0 -20.67 47.44 9 22.0 -33.15 39.42 22.0 -42.87 28.20 10 11 22.0 -49.04 14.69 12 22.0 -51.15 0.00 13 22.0 -49.04 -14.69

22.0 -42.87 -28.20

14

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

15 22.0 -33.15 -39.42

16 22.0 -20.67 -47.44

17 22.0 -6.42 -51.62

18 22.0 8.42 -51.62

19 22.0 22.67 -47.44

20 22.0 35.15 -39.42

21 22.0 44.87 -28.20

22 22.0 51.04 -14.69

- Combinazione di Carico: 3 mod 1

Azione Sd Sr N -420188.0 -1896496.9 [kg] Mx 0.0 -0.0 [kgm] My 0.0 0.0 [kgm]

Sd/Sr=0.22

- Combinazione di Carico: 1 mod 1

 Azione
 Sd
 Sr

 N
 -96320.0 -864257.9 [kg]

 Mx
 30762.0 276020.6 [kgm]

 My
 0.0 0.0 [kgm]

Sd/Sr=0.11

16.2 PARETE BASE

Coordinate sezione in calcestruzzo

Verti	ce x	У
1	0.00	0.00
2	0.00	100.00
3	100.00	100.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferr	o ø	X	у
1	22.0	6.00	94.00
2	22.0	20.67	94.00
3	22.0	35.33	94.00

prof. ing. Claudio Comastri
dott. ing. Rodolfo Biondi
dott. ing. Giuseppe Federici
dott. geol. Luca Domenico Venanti

4	22.0	50.00	94.00
5	22.0	64.67	94.00
6	22.0	79.33	94.00
7	22.0	94.00	94.00
8	22.0	94.00	6.00
9	22.0	79.33	6.00
10	22.0	64.67	6.00
11	22.0	50.00	6.00
12	22.0	35.33	6.00
13	22.0	20.67	6.00
14	22.0	6.00	6.00

- Combinazione di Carico: 3 mod 1

Azione	Sd	Sr	
N	-41975.0	-155059.1	[kg]
Mx	-42020.0	-155225.3	[kgm]
Му	0.0	0.0	[kgm]

Sd/Sr=0.27

- Combinazione di Carico: 5 mod 1

Azione	Sd	Sr	
N	-31825.0	-42957.2	[kg]
Mx	-80240.0	-108307.4	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.74

- Combinazione di Carico: 3 mod 2

Azione	Sd	Sr	
N	-26367.0	-61604.8	[kg]
Mx	-49795.0	-116342.7	[kgm]
Му	0.0	0.0	[kgm]

Sd/Sr=0.43

16.3 PARETE SOMMITA'

Coordinate sezione in calcestruzzo

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Vertice x y 1 0.00 0.00 2 0.00 70.00 3 100.00 70.00 4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø X у 18.0 6.00 64.00 2 18.0 20.67 64.00 3 18.0 35.33 64.00 18.0 50.00 64.00 4 18.0 64.67 64.00 5 6 18.0 79.33 64.00 7 18.0 94.00 64.00 8 18.0 94.00 6.00 9 18.0 79.33 6.00 10 18.0 64.67 6.00 11 18.0 50.00 6.00 12 18.0 35.33 6.00 13 18.0 20.67 6.00 14 18.0 6.00 6.00

- Combinazione di Carico: 3 mod 1

Azione	Sd	Sr	
N	-20210.0	-312880.6	[kg]
Mx	-7595.0	-117581.8	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.06

- Combinazione di Carico: 5 mod 1

Azione	Sd	Sr	
N	-18130.0	-101533.7	[kg]
Mx	-12530.0	-70172.0	[kgm]
My	0.0	0.0	[kgm]

Sd/Sr=0.18

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

- Combinazione di Carico: 3 mod 2

Azione Sd Sr

N -19210.0 -22148.4 [kg]

Mx -41062.0 -47342.9 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.87

16.4 PLATEA

Coordinate sezione in calcestruzzo

Vertice x y 1 0.00 0.00 2 0.00 150.00 3 100.00 150.00 4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø X У 1 22.0 7.00 143.00 2 22.0 21.33 143.00 22.0 35.67 143.00 3 4 22.0 50.00 143.00 5 22.0 64.33 143.00 6 22.0 78.67 143.00 7 22.0 93.00 143.00 8 18.0 93.00 7.00 9 18.0 78.67 7.00 10 18.0 64.33 7.00 18.0 50.00 7.00 11 18.0 35.67 7.00 12

- Combinazione di Carico: 3 mod.1

Azione Sd Sr

18.0 21.33 7.00 18.0 7.00 7.00

13

14

N -2057.0 -8434.4 [kg]

prof. ing. Claudio Comastri
dott. ing. Rodolfo Biondi
dott. ing. Giuseppe Federici
dott. geol. Luca Domenico Venanti
Mx 23975.0 98305.5 [kgm]
My 0.0 0.0 [kgm]

Sd/Sr=0.24

- Combinazione di Carico: 6 mod.1

 Azione
 Sd
 Sr

 N
 1524.0
 4139.2
 [kg]

 Mx
 -49580.0
 -134659.9
 [kgm]

 My
 0.0
 0.0
 [kgm]

Sd/Sr=0.37

16.5 TIRANTE DYWIDAG

La verifica di resistenza del tirante dywidag si effettua con le formulazioni riportate nel §4.2.4.1.2 delle NTC08.

Dove:

 $N_{ED} = 506 \text{ kN}$ $N_{r,Rd} = A^* f_{yk}/\gamma_{M0} = 723 \text{ kN}$ $N_{ED}/N_{r,Rd} = 0.70 < 1.00$

MURO TIPOLOGIA E - TRATTO 3

All'interno di questa relazione vengono condotte le verifiche di resistenza degli elementi strutturali, attraverso la combinazione 1 dell'approccio 1: (A1+M1+R1).

17 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

Per effettuare il dimensionamento della struttura sono state realizzate due diverse modellazioni con il codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033 Casalecchio di Reno (BO).

In entrambi i casi la struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

- elementi verticali "pilastro": Sez. 1 Muro di base di sezione in ca 100x100 cm, sezione di sommità 100X100 cm da quota +2.30 m dall'estradosso della fondazione alla sommità;
- elementi orizzontali con vincolamento interno tipo "biella": Sez. 1 Tirante realizzato con trefoli in acciaio; Sez. 2 Tirante in Dywidag.

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

I modelli sono sottoposti ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

La differenza tra i due modelli sta nel vincolamento esterno:

1- in un primo modello è stata simulata la presenza della trave di fondazione, per mezzo di un

elemento beam di sezione 6,80x1,50 m; la quale è vincolata all'esterno attraverso due aste di

lunghezza 20 m, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono

disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da

una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della

profondità. Per la valutazione delle caratteristiche geometriche della molla, che simulasse

correttamente il comportamento del terreno, è stata imposta l'uguaglianza tra la sua

deformazione assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state

vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella. Sul retro

della parete sono inserite delle aste, vincolate all'esterno per mezzo di incastri e con

comportamento a biella, che simulano la presenza dei tiranti passivi (barre dywidag) e del tirante

formato da sei trefoli da 15 t ciascuno (90t). Al tirante da 90 tonnellate viene applicato un tiro

permanente attivo di 60 t;

2- in un secondo modello non è simulata la trave di fondazione e i pali, ma soltanto la parete

verticale che è vincolata alla base in modo da evitare movimenti di traslazione verticale, lasciando

libera la traslazione orizzontale, tutti gli altri nodi del muro non presentano vincolamenti esterni.

Questo modello viene usato per valutare la fase passiva di lavoro del tirante a trefoli posto alla

base della parete.

Modellazione dei materiali

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato pali

 E_c = 315 000 daN/cm² per Rck \geq 300 daN/cm²

Cls armato fondazione e parete

 E_c = 336 000 daN/cm² per Rck \geq 350 daN/cm²

Acciaio

 $E_a = 2 100 000 \text{ daN/cm}^2$

Tipo di analisi

Le strutture sono state sottoposte ad una analisi statica con elementi tipo FRAME e alla verifica

con il metodo degli stati limite.

INTERVENTO DI CONSOLIDAMENTO PARIETALE DELLA RUPE DI MASSA MARTANA – Completamento degli interventi in

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

18 ANALISI DEI CARICHI

Peso Proprio (P₁):

Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di ca pari	2500 daN/m ³
a:	
Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di acciaio	7850 daN/m ³
pari a:	

Spinte laterali del terreno sulla parete (P_2)

Assumendo per il terreno a tergo della parete γ =1,8 t/m³; c = 0,0; ϕ = 30° ed in ipotesi di spinta a riposo (k₀ = 1 - sen ϕ = 0,50) si ricava un carico lineare con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: σ = γ · h · k₀.

z = 0	$\sigma = 0$
z = -9.45 m	σ = 8505 daN/mq

Peso Portato (P₃):

Carico permanente dovuto al rivestimento (pietra sp. 30 cm) considerando	2000 daN/m ³
un peso per unità di volume pari a	2000 dain/iii

Azioni sismiche $(P_4 - P_5 - P_7)$

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

In questo caso dal momento che è impedito lo spostamento orizzontale della struttura, il terreno a tergo si suppone in condizioni k_0 .

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nel nostro caso il muro non è in grado di subire spostamenti relativi rispetto al terreno, pertanto:

- il coefficiente $\beta m = 1,00$;
- l'incremento di spinta dovuta al sisma va applicato a metà altezza del muro.

2		Zona sismica
С		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long. 12,523762 °]
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione orizzontale
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]
k _V	0.161	[Coefficiente sismico per sisma verticale]

Valutazione dei pesi:

Parete in c.a. sp. 1,00 m W = 20,51 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mq W = 5,22 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale $S_{oizr} = 8,30 \text{ t al metro lineare di parete (in profondità)}$

Spinta verticale $S_{vert} = 4,15$ t al metro lineare di parete (in profondità)

Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

q_{oriz} = 0,88 t al metro lineare di parete (in profondità)

q_{vert} = 0,44 t al metro lineare di parete (in profondità)

Tiro attivo (P_6) :

Nel modello 1 si ipotizza il funzionamento attivo dei tiranti formati da trefoli da 90 t, applicando su di essi un tiro permanente attivo di 60 t.

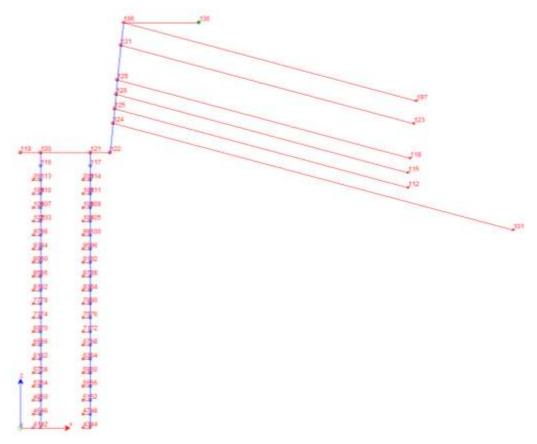
Sovraccarico sommitale (P_8) :

Si ipotizza un sovraccarico sulla soletta a sbalzo a monte di 1000 daN/mq.

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti


Al modello si applica un sovraccarico uniforme lineare sulla soletta di 1000 daN/ml, inoltre in ipotesi di spinta a riposo ($k_0 = 1$ - sen $\phi = 0,50$) si applica un carico orizzontale lungo la parete del muro lineare uniforme, dovuto al sovraccarico di :

 S_{sovr} = 500 daN al metro lineare di parete (in profondità)

Applicato in sommità per i primi tre metri di altezza.

19 MODELLO 1: FASE ATTIVA DEI TIRANTI

19.1 SCHEMA DI CALCOLO DEL MURO

19.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

	Commento	P PR	SP TER	P POR	SISMA_ORIZ	SISMA VER +	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	1,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	1,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	1,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	1,	1,	0,6

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

19.3 RISULTATI DELL'ANALISI

 $MODELLI_DI_CALCOLO \setminus TIPOLOGIA_E \setminus TRATTO_3 \setminus MODELLO_STR \setminus TIRANTATO_MODELLO_1_STR_V_02. dt$

Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 122	124	22575.8 [kg]	Comb. 1 Max asta	122	124	61228.6 [kg]	Comb. 3
Taglio piano 1-2	Min asta 124	125	-34496.6 [kg]	Comb. 3 Max asta	122	124	24004.6 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124	125	-0.0 [kg]	Comb. 1 Max asta	124	125	0.0 [kg]	Comb. 3
Momento torcente	Min asta 124	125	-0.0 [kgm]	Comb. 1 Max asta	124	125	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 124	125	-54408.7 [kgm]	Comb. 1 Max asta	124	125	1024.2 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 122	124	-0.0 [kgm]	Comb. 1 Max asta	122	124	0.0 [kgm]	Comb. 3

Pilastro Sezione numero 2 Rett. Muro di sommità

Sforzo normale	Min asta 1	31 196	9310.8 [kg]	Comb. 1 Max asta	125	126	51004.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 1	25 126	-26175.8 [kg]	Comb. 3 Max asta	131	196	427.2 [kg]	Comb. 6
Taglio piano 1-3	Min asta 1	31 196	-0.0 [kg]	Comb. 1 Max asta	131	196	0.0 [kg]	Comb. 3
Momento torcente	Min asta 1	31 196	-0.0 [kgm]	Comb. 1 Max asta	131	196	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 1	25 126	-24405.3 [kgm]	Comb. 1 Max asta	131	196	63903.1 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 1	25 126	-0.0 [kgm]	Comb. 1 Max asta	125	126	0.0 [kgm]	Comb. 3

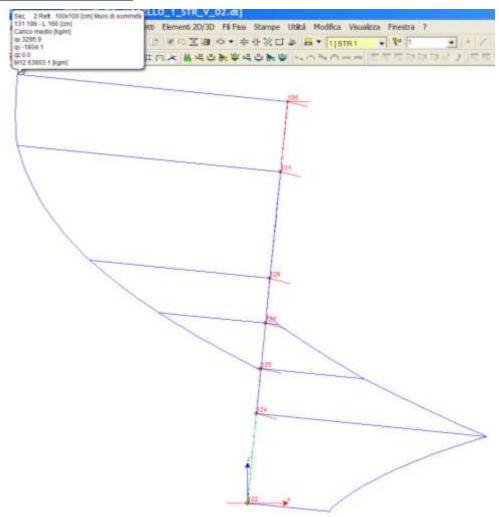
Pilastro Sezione numero 3 Circolare PALO

Sforzo normale	Min asta 116 120	-6860.5 [kg]	Comb. 2 Max asta 121 117	93492.0 [kg]	Comb. 3
Taglio piano 1-2	Min asta 96 92	-3.4 [kg]	Comb. 3 Max asta 96 92	2.3 [kg]	Comb. 1
Taglio piano 1-3	Min asta 121 117	-1876.8 [kg]	Comb. 3 Max asta 116 120	2926.1 [kg]	Comb. 1
Momento torcente	Min asta 121 117	-0.0 [kgm]	Comb. 3 Max asta 121 117	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 96 92	-19.5 [kgm]	Comb. 3 Max asta 96 92	1.3 [kgm]	Comb. 1
Momento Flet. piano 1-3	Min asta 121 117	-17902.9 [kgm]	Comb. 3 Max asta 121 117	13966.7 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta 125 112	307.8 [kg]	Comb. 3 Max asta	196 197	2948.8 [kg]	Comb. 2
Taglio piano 1-2	Min asta 126 115	0.0 [kg]	Comb. 1 Max asta	128 118	0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 126 115	0.0 [kg]	Comb. 1 Max asta	126 115	0.0 [kg]	Comb. 1
Momento torcente	Min asta 126 115	0.0 [kgm]	Comb. 1 Max asta	126 115	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 128 118	-0.0 [kgm]	Comb. 3 Max asta	126 115	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-3	Min asta 126 115	-0.0 [kgm]	Comb. 1 Max asta	126 115	-0.0 [kgm]	Comb. 1

Trave Sezione numero 3 Rett. FONDAZIONE

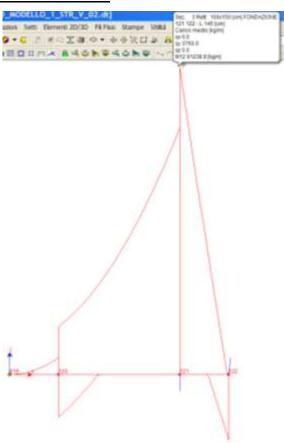

Sforzo normale	Min asta 121 122	2 -5620.4 [kg]	Comb. 1 Max asta 12	1 122	2930.0 [kg]	Comb. 3
Taglio piano 1-2	Min asta 120 12	l -25798.0 [kg]	Comb. 2 Max asta 12	1 122	68309.8 [kg]	Comb. 3
Taglio piano 1-3	Min asta 120 12	l -0.0 [kg]	Comb. 1 Max asta 12	20 121	0.0 [kg]	Comb. 3
Momento torcente	Min asta 121 122	2 -0.0 [kgm]	Comb. 1 Max asta 12	20 121	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 121 122	2 -19424.0 [kgm]	Comb. 6 Max asta 12	1 122	91238.8 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 120 12	l -0.0 [kgm]	Comb. 1 Max asta 12	20 121	0.0 [kgm]	Comb. 1

Trave Sezione numero 6 Rett. SOLETTA A SBALZO

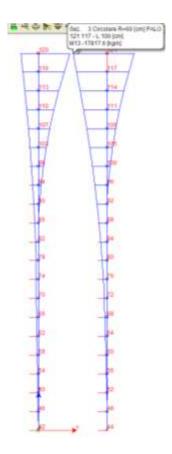
Sforzo normale	Min asta 196 136 0).0 [kg]	Comb. 1 Max asta	196 136	0.0 [kg]	Comb. 1
Taglio piano 1-2	Min asta 196 136 0).0 [kg]	Comb. 1 Max asta	196 136	23237.5 [kg]	Comb. 3
Taglio piano 1-3	Min asta 196 136 0).0 [kg]	Comb. 1 Max asta	196 136	0.0 [kg]	Comb. 1
Momento torcente	Min asta 196 136 0).0 [kgm]	Comb. 1 Max asta	196 136	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 196 136 0).0 [kgm]	Comb. 1 Max asta	196 136	63903.1 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 196 136 -	0.0 [kgm]	Comb. 1 Max asta	196 136	-0.0 [kgm]	Comb. 1

19.4 RAPPRESENTAZIONE GRAFICA

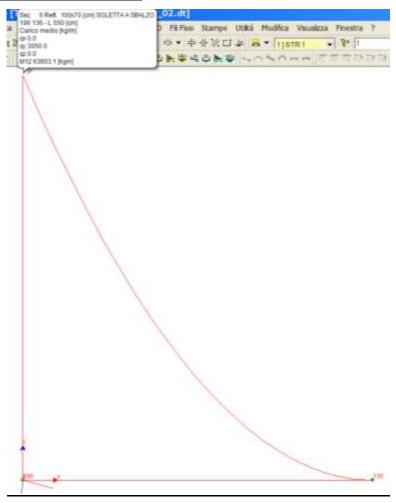
Momento massimo sulla parete



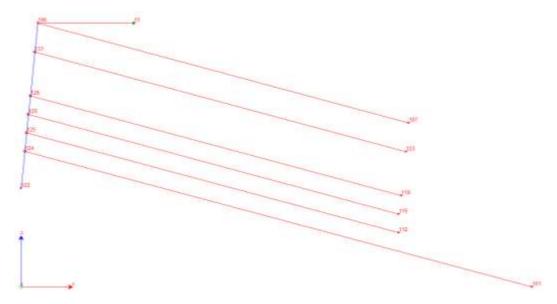
dott. ing. Rodolfo Biondi


dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti


Momento massimo sulla trave di fondazione

Momento massimo sui pali



Momento massimo sulla soletta a sbalzo

20 MODELLO 2: FASE PASSIVA DEL TIRANTE

20.1 SCHEMA DI CALCOLO DEL MURO

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

20.2 COMBINAZIONI DI CARICO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	0,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	0,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	0,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	0,	1,	0,6

20.3 RISULTATI DELL'ANALISI

 $MODELLI_DI_CALCOLO \setminus TIPOLOGIA_E \setminus TRATTO_3 \setminus MODELLO_STR \setminus TIRANTATO_MODELLO_2_STR_V_02. dt$

Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta	124 125	30916.2 [kg]	Comb. 1	Max asta	122	124	74748.4 [kg]	Comb. 3
Taglio piano 1-2	Min asta	124 125	809.5 [kg]	Comb. 2	Max asta	122	124	27320.5 [kg]	Comb. 3
Taglio piano 1-3	Min asta	124 125	0.0 [kg]	Comb. 1	Max asta	124	125	0.0 [kg]	Comb. 1
Momento torcente	Min asta	124 125	0.0 [kgm]	Comb. 1	Max asta	124	125	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta	124 125	-43686.8 [kgm]	Comb. 3	Max asta	122	124	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta	124 125	-0.0 [kgm]	Comb. 1	Max asta	124	125	-0.0 [kgm]	Comb. 1

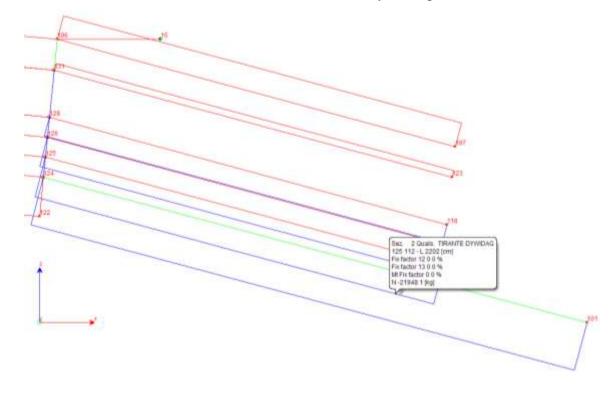
Pilastro Sezione numero 2 Rett. Muro di sommità

Sforzo normale	Min asta 131	196 8260.5 [kg]	Comb. 1 Max asta 1	25 126	50889.0 [kg]	Comb. 3
Taglio piano 1-2	Min asta 128	131 -26022.6 [kg]	Comb. 3 Max asta 1	25 126	-1576.5 [kg]	Comb. 1
Taglio piano 1-3	Min asta 131	196 0.0 [kg]	Comb. 1 Max asta 1	31 196	0.0 [kg]	Comb. 1
Momento torcente	Min asta 131	196 0.0 [kgm]	Comb. 1 Max asta 1	31 196	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 125	126 -43686.8 [kgm]	Comb. 3 Max asta 1	31 196	57096.9 [kgm]	Comb. 3
Momento Flet, piano 1-3	Min asta 131	196 -0.0 [kgm]	Comb. 1 Max asta 1	31 196	-0.0 [kgm]	Comb. 1

Trave Sezione numero 1 Quals. TIRANTE 90 T

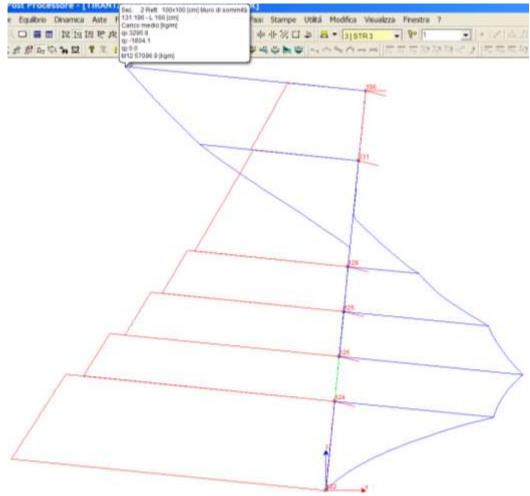
Sforzo normale	Min asta 124 101	-26264.6 [kg]	Comb. 3 Max asta	124 10	1 -18085.0 [kg]	Comb. 1
Taglio piano 1-2	Min asta 124 101	-0.0 [kg]	Comb. 3 Max asta	124 10	1 -0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124 101	0.0 [kg]	Comb. 1 Max asta	124 10	1 0.0 [kg]	Comb. 1
Momento torcente	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 10	1 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 10	1 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 124 101	-0.0 [kgm]	Comb. 1 Max asta	124 10	1 -0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

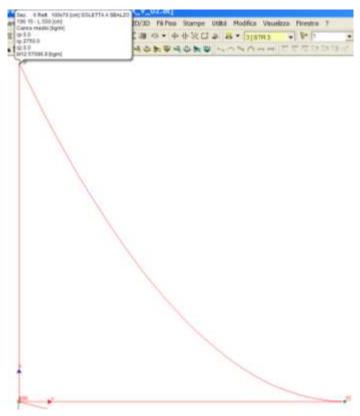

Sforzo normale	Min asta 125 112	-21948.1 [kg]	Comb. 3 Max asta	196 197	13089.0 [kg]	Comb. 3
Taglio piano 1-2	Min asta 196 197	-0.0 [kg]	Comb. 3 Max asta	126 115	0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 126 115	0.0 [kg]	Comb. 1 Max asta	126 115	0.0 [kg]	Comb. 1
Momento torcente	Min asta 126 115	0.0 [kgm]	Comb. 1 Max asta	126 115	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 126 115	-0.0 [kgm]	Comb. 3 Max asta	196 197	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 126 115	-0.0 [kgm]	Comb. 1 Max asta	126 115	-0.0 [kgm]	Comb. 1

Trave Sezione numero 6 Rett. SOLETTA A SBALZO

Sforzo normale	Min asta	196 15	0.0 [kg]	Comb. 1 Max asta	196 15	0.0 [kg]	Comb. 1
Taglio piano 1-2	Min asta	196 15	0.0 [kg]	Comb. 1 Max asta	196 15	20762.5 [kg]	Comb. 3
Taglio piano 1-3	Min asta	196 15	0.0 [kg]	Comb. 1 Max asta	196 15	0.0 [kg]	Comb. 1
Momento torcente	Min asta	196 15	0.0 [kgm]	Comb. 1 Max asta	196 15	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta	196 15	0.0 [kgm]	Comb. 1 Max asta	196 15	57096.9 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta	196 15	-0.0 [kgm]	Comb. 1 Max asta	196 15	-0.0 [kgm]	Comb. 1


20.4 RAPPRESENTAZIONE GRAFICA

Sollecitazione di trazione massima del tirante dywidag



Diagrammi di sollecitazione del muro: sforzo normale e momento flettente

Diagrammi di sollecitazione sulla soletta a sbalzo momento flettente della sezione maggiormente sollecitata

21 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 2.50 m si ha:

PALO	N [daN]	M [daNm]
Combo 3 Mod.1	233730 [compres]	- 44760

PARETE BASE sp. 100 cm

PARETE	N [daN]	M [daNm]
Combo 1 Mod.1	28734 [compres]	- 54410
Combo 3 Mod.2	54450 [compres]	- 43690

PARETE SOMMITA' sp. 100 cm - a quota 2,30 m dall'estradosso della fondazione

PARETE	N [daN]	M [daNm]
Combo 3 Mod.1	22714 [compres]	63905
Combo 1 Mod 2	25823 [compres]	-24500

PLATEA DI FONDAZIONE

PLATEA	N [daN]	M [daNm]
Combo 3 Mod.1	2930 [compres]	-91240

SOLETTA A SBALZO

SOLETTA	N [daN]	M [daNm]
Combo 3 Mod.1	0	63905

TIRANTE DYWIDAG

Considerando che le barre dywidag sono poste ad un interasse in direzione longitudinale di 2.50 m si ha:

DYWIDAG	N [daN]
Combo 3 Mod. 2	- 54875 [traz]

22 VERIFICA ELEMENTI STRUTTURALI

22.1 PALO

Coordinate sezione in calcestruzzo

Vertice	X	У
1	60.00	0.00
2	58.85	-11.71
3	55.43	-22.96
4	49.89	-33.33
5	42.43	-42.43
6	33.33	-49.89
7	22.96	-55.43
8	11.71	-58.85
9	0.00	-60.00
10	-11.71	-58.85

-22.96 -55.43 11 12 -33.33 -49.89 13 -42.43 -42.43 14 -49.89 -33.33 15 -55.43 -22.96 -58.85 -11.71 16 17 -60.00 0.00 18 -58.85 11.71 19 -55.43 22.96 20 -49.89 33.33 21 -42.43 42.43 22 -33.33 49.89 23 -22.96 55.43 24 -11.71 58.85 25 0.00 60.00 26 11.71 58.85 27 22.96 55.43 28 33.33 49.89 29 42.43 42.43 30 49.89 33.33 31 55.43 22.96 32 58.85 11.71

Coordinate e diametro ferri di armatura

Ferro	Ø	X	У
1	22.0	53.15	0.00
2	22.0	51.04	14.69
3	22.0	44.87	28.20
4	22.0	35.15	39.42
5	22.0	22.67	47.44
6	22.0	8.42	51.62
7	22.0	-6.42	51.62
8	22.0	-20.67	47.44
9	22.0	-33.15	39.42
10	22.0	-42.87	28.20
11	22.0	-49.04	14.69
12	22.0	-51.15	0.00

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

- 13 22.0 -49.04 -14.69
- 14 22.0 -42.87 -28.20
- 15 22.0 -33.15 -39.42
- 16 22.0 -20.67 -47.44
- 17 22.0 -6.42 -51.62
- 18 22.0 8.42 -51.62
- 19 22.0 22.67 -47.44
- 20 22.0 35.15 -39.42
- 21 22.0 44.87 -28.20
- 22 22.0 51.04 -14.69

- Combinazione di Carico: 3 mod 1

Azione	Sd	Sr	
N	-233730.0	-1157230.0	[kg]
Mx	-47760.0	-236466.5	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.20

22.2 PARETE BASE

Coordinate sezione in calcestruzzo

Vertice	X	У
1	0.00	0.00
2	0.00	100.00
3	100.00	100.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	Ø	X	У
1	18.0	6.00	94.00
2	18.0	20.67	94.00
3	18.0	35.33	94.00
4	18.0	50.00	94.00
5	18.0	64.67	94.00
6	18.0	79.33	94.00
7	18.0	94.00	94.00
8	18.0	94.00	6.00
9	18.0	79.33	6.00

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

10	18.0	64.67	6.00
11	18.0	50.00	6.00
12	18.0	35.33	6.00
13	18.0	20.67	6.00
14	18.0	6.00	6.00

- Combinazione di Carico: 1 mod 1

 Azione
 Sd
 Sr

 N
 -28734.0 -41661.7 [kg]

 Mx
 -54410.0 -78889.6 [kgm]

 My
 0.0
 0.0 [kgm]

Sd/Sr=0.69

- Combinazione di Carico: 3 mod 2

AzioneSdSrN-54450.0 -160781.7 [kg]Mx-43690.0 -129009.2 [kgm]My0.0 0.0 [kgm]

Sd/Sr=0.34

22.3 PARETE SOMMITA'

Coordinate sezione in calcestruzzo

Vertice	X	У
1	0.00	0.00
2	0.00	100.00
3	100.00	100.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	ø	x	у
1	18.0	6.00	64.00
2	18.0	20.67	64.00
3	18.0	35.33	64.00
4	18.0	50.00	64.00
5	18.0	64.67	64.00
6	18.0	79.33	64.00

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

7 18.0 94.00 64.00

18.0 94.00 6.00

7 10.0 94.00 04.00

8

9 18.0 79.33 6.00

10 18.0 64.67 6.00

11 18.0 50.00 6.00

12 18.0 35.33 6.00

13 18.0 20.67 6.00

14 18.0 6.00 6.00

- Combinazione di Carico: 3 mod 1

Azione Sd Sr

N -22714.0 -25506.2 [kg]

Mx 63905.0 71760.9 [kgm]

My 0.0 -0.0 [kgm]

Sd/Sr=0.89

- Combinazione di Carico: 1 mod 2

Azione Sd Sr

N -25823.0 -117223.8 [kg]

Mx -24500.0 -111218.0 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.22

22.4 PLATEA

Coordinate sezione in calcestruzzo

Vertice x y

1 0.00 0.00

2 0.00 150.00

3 100.00 150.00

4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø x y

1 22.0 7.00 143.00

2 22.0 21.33 143.00

3 22.0 35.67 143.00

- 4 22.0 50.00 143.00
- 5 22.0 64.33 143.00
- 6 22.0 78.67 143.00
- 7 22.0 93.00 143.00
- 8 18.0 93.00 7.00
- 9 18.0 78.67 7.00
- 10 18.0 64.33 7.00
- 11 18.0 50.00 7.00
- 12 18.0 35.67 7.00
- 13 18.0 21.33 7.00
- 14 18.0 7.00 7.00

- Combinazione di Carico: 3 mod.1

AzioneSdSrN-2930.0-4514.8[kg]Mx-91240.0-140590.5[kgm]My0.0-0.0[kgm]

Sd/Sr=0.65

22.5 SOLETTA A SBALZO

Coordinate sezione in calcestruzzo

Vertice	X	У
1	0.00	0.00
2	0.00	70.00
3	100.00	70.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	Ø	x	у
1	24.0	93.00	7.00
2	24.0	78.67	7.00
3	24.0	64.33	7.00
4	24.0	50.00	7.00
5	24.0	35.67	7.00
6	24.0	21.33	7.00
7	24.0	7.00	7.00
8	18.0	7.00	63.00

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

9 18.0 21.33 63.00

10 18.0 35.67 63.00

11 18.0 50.00 63.00

12 18.0 64.33 63.00

13 18.0 78.67 63.00

14 18.0 93.00 63.00

- Combinazione di Carico: 3 mod.1

Azione Sd Sr N 0.0 0.0 [kg] Mx 63905.0 69769.6 [kgm] My 0.0 -0.0 [kgm]

Sd/Sr=0.92

22.6 TIRANTE DYWIDAG

La verifica di resistenza del tirante dywidag si effettua con le formulazioni riportate nel §4.2.4.1.2 delle NTC08.

Dove:

 $N_{ED} = -548.75 \text{ kN}$

 $N_{r,Rd} = A^* f_{vk}/\gamma_{M0} = 723 \text{ kN}$

 $N_{ED}/N_{r,Rd} = 0.76 < 1,00$

MURO TIPOLOGIA F - TRATTO 1

23 VERIFICHE MURI CON FONDAZIONI PROFONDE E PARETI NON ANCORATE

Dal momento che si tratta di muri con fondazioni profonde e pareti non ancorate la verifica deve essere condotta seguendo le indicazioni riportate nella tabella successiva:

		STABILITA' GLOBALE MURO- TERRENO	1	C2: A2+M2+R2
FONDAZIONI PROFONDE E PARETE NON ANCORATA	GEO	CARICO LIMITE DELLA PALIFICATA PER CARICHI ASSIALI CARICO LIMITE DELLA PALIFICATA PER CARICHI TRASVERSALI CARICO LIMITE DI SFILAMENTO PER CARICHI ASSIALI DI TRAZIONE	1 OVVERO 2	APP. 1: C1[STR]: A1+M1+R1 C2[GEO]: A2+M1+R2 OVVERO APP.2: C1 [GEO/STR]: A1+M1+R3
	STR	RESISTENZA ELEMENTI STRUTTURALI (PALI E STRUTTURA DI COLLEGAMENTO)		61 [610/31N]. AT WITHS

Le verifiche STR e GEO vengono effettuate considerando **l'approccio 2**, ovvero un'unica combinazione di carico **A1+M1+R3**.

- VERIFICHE DI SICUREZZA
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali,
 - raggiungimento della resistenza degli elementi strutturali.

I coefficienti parziali per le azioni e per gli effetti delle azioni sono riportati nella tabella 6.2.I delle NTC:

Tabella 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale % (o %)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	701	0.9	1,0	1,0
Permanenti	Sfavorevole		1.1	1,3	1,0
Permanenti non strutturali (1)	Favorevole	E E	0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	Yoz	1,5	1,5	1.3
Variable	Favorevole	- 2	0,0	0,0	0,0
Variabili	Sfavorevole	To:	1.5	1.5	1.3

⁽¹⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portatti) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

I coefficienti per i parametri geotecnici del terreno sono riportati nella tabella 6.2.II delle NTC 2008:

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE YM	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	γ _{φ'}	1,0	1,25
Coesione efficace	c' _k	γ _{e'}	1,0	1,25
Resistenza non drenata	Cuk	Yeu	1,0	1,4
Peso dell'unità di volume	γ	Yr	1.0	1,0

I coefficienti parziali g_R per le verifiche agli stati limite ultimi STR dei pali sono riportati nella tab. 6.4.II delle NTC 2008:

Tabella 6.4.II – Coefficienti parziali ⅓ da applicare alle resistenze caratteristiche.

Resistenza	Simbolo	Pali infissi		Pali trivellati			Pali ad elica continua			
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Уь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γ,	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	γ,	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	Υst	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

24 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

Per effettuare il dimensionamento della struttura è stata realizzata una modellazione con il codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033 Casalecchio di Reno (BO).

La struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

 elementi verticali "pilastro": Sez. 1 - Muro di base di sezione in ca 70x100 cm, Sez. 2 - Muro di sommità, dalla sezione di estradosso della fondazione e quota 3,07 m, di sezione in ca 70x100 cm;

Il modello è sottoposto ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

Il vincolamento esterno è simulato dalla presenza della trave di fondazione, per mezzo di un elemento beam di sezione 6,80x1,50 m; la quale è vincolata all'esterno attraverso due aste di lunghezza 20 m, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della profondità. Per la valutazione delle caratteristiche geometriche di una molla che simulasse correttamente il comportamento del terreno è stata imposta l'uguaglianza tra la sua deformazione

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella.

Modellazione dei materiali

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato pali E_c= 315 000 daN/cm² per Rck ≥ 300 daN/cm²

Cls armato fondazione e parete $E_c = 336~000~daN/cm^2~per~Rck \ge 350~daN/cm^2$

Acciaio $E_a = 2 100 000 \text{ daN/cm}^2$

Tipo di analisi

Le strutture sono state sottoposte ad una analisi statica con elementi tipo FRAME e alla verifica con il metodo degli stati limite.

25 ANALISI DEI CARICHI

Peso Proprio (P₁):

Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di ca pari	2500 daN/m ³
a:	
Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di acciaio	7850 daN/m³
pari a:	

Spinte laterali del terreno sulla parete (P_2)

Assumendo per il terreno a tergo della parete $\sqsupset=1,8$ t/m³; c = 0,0; $\sqsupset=30^\circ$ ed in ipotesi di spinta attiva ($k_a=0,333$) si ricava un carico lineare con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: $\sqsupset=\supsetneq\cdot h\cdot k_a$.

z = 0	$\sigma = 0$
z = -3,00 m	σ = 1800 daN/mq
z = -7.20 m	σ = 4315 daN/mq

Peso Portato (P₃):

permanente dovuto al rivestimento (pietra sp. 30 cm) considerando 2000 daN/m³

un peso per unità di volume pari a	

Azioni sismiche (P_4 - P_5 - P_7)

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo stato limite ultimo, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g} \tag{7.11.6}$$

$$k_v = \pm 0.5 \cdot k_h$$
 (7.11.7)

dove

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g \tag{7.11.8}$$

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2;

 a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nel nostro caso si suppone, a favore di sicurezza:

- il coefficiente $\beta_m = 1,00$;
- l'incremento di spinta dovuta al sisma applicato a metà altezza del muro.

2		Zona sismica						
С		Categoria del suolo						
T2		Categoria topografica						
V _T >=	50 anni	Vita nominale della struttura						
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III						
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long. 12,523762 °]						
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione orizzontale						
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale						

S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
⊐m	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]
k _V	0.161	[Coefficiente sismico per sisma verticale]

Valutazione dei pesi:

Parete in c.a. sp. 0,70 m W = 11,75 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mg W = 4,80 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale S_{oizr} = 5,35 t al metro lineare di parete (in profondità)

Spinta verticale S_{vert} = 2,68 t al metro lineare di parete (in profondità)

Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

q_{oriz} = 0,670 t al metro lineare di parete (in profondità)

q_{vert} = 0,335 t al metro lineare di parete (in profondità)

Sovraccarico sommitale (P_6) :

Si ipotizza un sovraccarico sulla soletta a sbalzo a monte di 1000 daN/mq.

Al modello si applica un sovraccarico uniforme lineare sulla soletta di 1000 daN/ml, inoltre in ipotesi di spinta attiva ($k_a = 0.333$) si ricava un carico orizzontale lungo la parete del muro lineare uniforme, dovuto al sovraccarico di :

S_{sovr} = 333 daN al metro lineare di parete (in profondità)

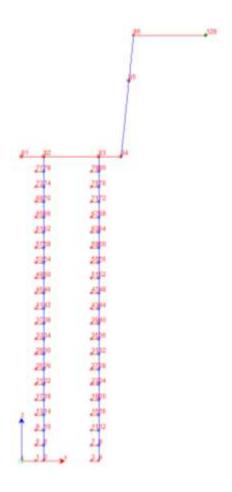

Applicato in sommità per i primi tre metri di altezza, combinato agli altri carichi con i coefficienti di combinazione riportati in tabella:

Tabella 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψ 0i	Ψli	Ψ _{2i}
Categoria A Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B Uffici	0.7	0.5	0.3
Categoria C Ambienti suscettibili di affollamento	0.7	0.7	0.6
Categoria D Ambienti ad uso commerciale	0,7	0,7	0,6

26 MODELLO STRUTTURALE

26.1 SCHEMA DI CALCOLO DEL MURO

26.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER +	Q_SOMMITA'	SISMA VER -
1	1	1,	1,	0,	0,	0,	0,	0,
2	2	1,	1,	1,5	0,	0,	0,	0,
3	3	1,3	1,3	1,5	0,	0,	1,5	0,
4	S1	1,	1,	1,	1,	0,	0,6	0,
5	S2	1,	1,	1,	1,	1,	0,6	0,
6	S3	1,	1,	1,	1,	0,	0,6	1,

26.3 RISULTATI DELL'ANALISI

MODELLI_DI_CALCOLO\TIPOLOGIA_F\TIPOLOGIA_F1\MODELLO_F1_GEO_STR_V_03.dt

Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 84 130 148	886.5 [kg]	Comb. 1 Max asta 84	130 42449.4 [kg]	Comb. 3
Taglio piano 1-2	Min asta 84 130 -20	0626.2 [kg]	Comb. 6 Max asta 84	130 -4316.2 [kg]	Comb. 2
Taglio piano 1-3	Min asta 84 130 0.0) [kg]	Comb. 2 Max asta 84	130 0.0 [kg]	Comb. 3
Momento torcente	Min asta 84 130 0.0) [kgm]	Comb. 2 Max asta 84	130 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 84 130 -36	6732.1 [kgm]	Comb. 6 Max asta 84	130 28254.5 [kgm]	Comb. 3

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Momento Flet. piano 1-3 Min asta 84 130 0.0 [kgm] Comb. 2 Max asta 84 130 0.0 [kgm] Comb. 3

Pilastro Sezione numero 2 Rett. Muro di sommità

Sforzo normale	Min asta 129 8	6 590	7.8 [kg]	Comb. 1	l Max asta	130 129	30890.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 130	29 -813	31.7 [kg]	Comb. 6	6 Max asta	129 86	1483.8 [kg]	Comb. 3
Taglio piano 1-3	Min asta 129 8	6 0.0	[kg]	Comb. 2	2 Max asta	129 86	0.0 [kg]	Comb. 3
Momento torcente	Min asta 130	29 0.0	[kgm]	Comb. 2	2 Max asta	129 86	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 130	29 786	9.2 [kgm]	Comb. 6	6 Max asta	129 86	36955.4 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 129 8	6 -0.0	[kgm]	Comb. 3	3 Max asta	130 129	0.0 [kgm]	Comb. 3

Pilastro Sezione numero 3 Circolare PALO

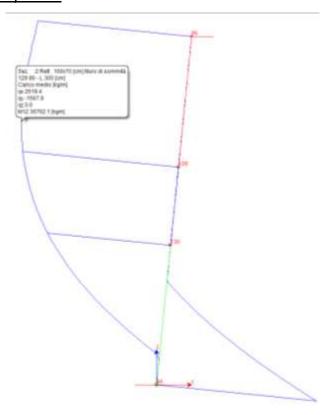
Sforzo normale	Min asta 83 80 1265.3 [kg]	Comb. 6 Max asta 78 82 48025.5 [kg]	Comb. 6
Taglio piano 1-2	Min asta 56 52 -12.1 [kg]	Comb. 3 Max asta 78 74 0.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 83 80 -12204.2 [kg]	Comb. 3 Max asta 12 16 512.8 [kg]	Comb. 6
Momento torcente	Min asta 83 80 -0.0 [kgm]	Comb. 3 Max asta 80 76 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 56 52 -34.6 [kgm]	Comb. 3 Max asta 34 30 6.9 [kgm]	Comb. 6
Momento Flet. piano 1-3	3 Min asta 83 80 -70675.1 [kgm	n] Comb. 3 Max asta 78 82 65926.1 [kgm] Comb. 3

Trave Sezione numero 3 Rett. FONDAZIONE

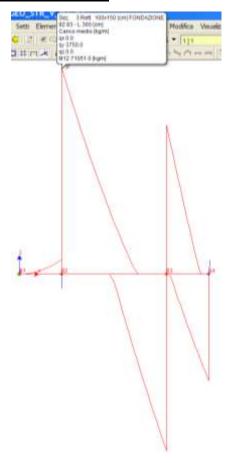
Sforzo normale	Min asta 81 82 0.0 [kg]	Comb. 1 Max asta 83 84 23951.4 [kg]	Comb. 3
Taglio piano 1-2	Min asta 81 82 -7068.8 [kg]	Comb. 3 Max asta 83 84 47325.6 [kg]	Comb. 3
Taglio piano 1-3	Min asta 81 82 0.0 [kg]	Comb. 5 Max asta 82 83 0.0 [kg]	Comb. 3
Momento torcente	Min asta 82 83 -0.0 [kgm]	Comb. 3 Max asta 83 84 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 82 83 -60847.7 [kgm]] Comb. 6 Max asta 82 83 71051.0 [kgm] Comb. 3
Momento Flet. piano 1-3	Min asta 82 83 -0.0 [kgm]	Comb. 3 Max asta 82 83 0.0 [kgm]	Comb. 3

Trave Sezione numero 6 Rett. SOLETTA A SBALZO

Sforzo normale	Min asta 86 128 -0.0 [[kg] Comb. 4 Max	x asta 86 128 0.0 [kg]	Comb. 2
Taglio piano 1-2	Min asta 86 128 0.0 [l	kg] Comb. 1 Max	x asta 86 128 14843.8 [kg	[s] Comb. 3
Taglio piano 1-3	Min asta 86 128 0.0 [l	kg] Comb. 1 Max	x asta 86 128 0.0 [kg]	Comb. 1
Momento torcente	Min asta 86 128 0.0 [l	kgm] Comb. 1 Max	x asta 86 128 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 86 128 0.0 [l	kgm] Comb. 1 Max	x asta 86 128 35253.9 [kg	[m] Comb. 3
Momento Flet. piano 1-3	Min asta 86 128 -0.0 [[kgm] Comb. 1 Max	x asta 86 128 -0.0 [kgm]	Comb. 1


26.4 RAPPRESENTAZIONE GRAFICA

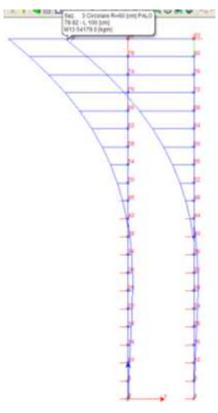
prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi


dott. ing. Giuseppe Federici

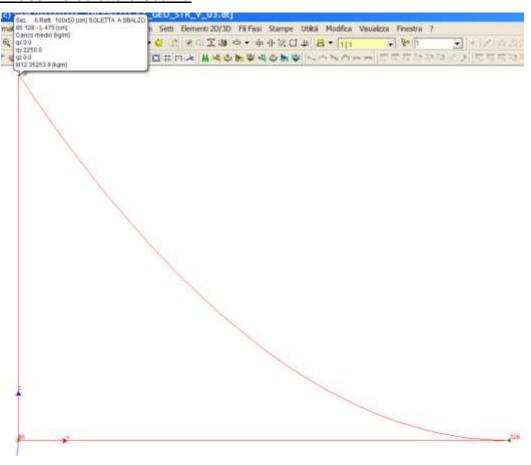
dott. geol. Luca Domenico Venanti

Momento massimo sulla parete

Momento massimo sulla trave di fondazione



dott. ing. Rodolfo Biondi


dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Momento massimo sui pali

Momento massimo soletta a sbalzo

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

27 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 3.40 m si ha:

PALO	N [daN]	M [daNm]
Combo 6	163286 [compres]	178874
Combo 3	105516 [compres]	- 240295

PARETE BASE sp. 70 cm - fino a quota 3.00 dall'estradosso della fondazione

PARETE	N [daN]	M [daNm]
Combo 3	30890[compres]	28254
Combo 6	27113 [compres]	- 36732

PARETE SOMMITA' sp. 70 cm - dall'estradosso della fondazione a 3,00 m

PARETE	N [daN]	M [daNm]
Combo 3a	30890 [compres]	28255
Combo 3b	20796 [compres]	36955

PLATEA DI FONDAZIONE

PLATEA	N [daN]	M [daNm]
Combo 3a	23951 [compres]	51487
Combo 6	11616 [compres]	-60848
Combo 3b	11747 [compres]	71051

SOLETTA A SBALZO

SOLETTA	N [daN]	M [daNm]
Combo 3	0	35254

28 VERIFICA ELEMENTI STRUTTURALI

28.1 PALO

Coordinate sezione in calcestruzzo

Vertice	x	у
1	60.00	0.00
2	58.85	-11.71
3	55.43	-22.96
4	49.89	-33.33
5	42.43	-42.43
6	33.33	-49.89
7	22.96	-55.43
8	11.71	-58.85
9	0.00	-60.00
10	-11.71	-58.85
11	-22.96	-55.43
12	-33.33	-49.89
13	-42.43	-42.43
14	-49.89	-33.33
15	-55.43	-22.96
16	-58.85	-11.71
17	-60.00	0.00
18	-58.85	11.71
19	-55.43	22.96
20	-49.89	33.33
21	-42.43	42.43
22	-33.33	49.89
23	-22.96	55.43
24	-11.71	58.85
25	0.00	60.00
26	11.71	58.85
27	22.96	55.43
28	33.33	49.89
29	42.43	42.43
30	49.89	33.33
31	55.43	22.96

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

32 58.85 11.71

Coordinate e diametro ferri di armatura

Ferro ø x y

- 1 26.0 53.15 0.00
- 2 26.0 51.04 14.69
- 3 26.0 44.87 28.20
- 4 26.0 35.15 39.42
- 5 26.0 22.67 47.44
- 6 26.0 8.42 51.62
- 7 26.0 -6.42 51.62
- 8 26.0 -20.67 47.44
- 9 26.0 -33.15 39.42
- 10 26.0 -42.87 28.20
- 11 26.0 -49.04 14.69
- 12 26.0 -51.15 0.00
- 13 26.0 -49.04 -14.69
- 14 26.0 -42.87 -28.20
- 15 26.0 -33.15 -39.42
- 16 26.0 -20.67 -47.44
- 17 26.0 -6.42 -51.62
- 18 26.0 8.42 -51.62
- 19 26.0 22.67 -47.44
- 20 26.0 35.15 -39.42
- 21 26.0 44.87 -28.20
- 22 26.0 51.04 -14.69

- Combinazione di Carico: 3

Azione Sd Sr

N -105516.0 -105766.5 [kg]

Mx -240295.0 -240865.4 [kgm]

My 0.0 -0.0 [kgm]

Sd/Sr=1.00

- Combinazione di Carico: 6

Azione Sd Sr

prof. ing. Claudio Comastri
dott. ing. Rodolfo Biondi
dott. ing. Giuseppe Federici
dott. geol. Luca Domenico Venanti

N -163286.0 -256744.7 [kg]

Mx 178874.0 281254.7 [kgm]

My 0.0 -0.0 [kgm]

Sd/Sr=0.64

28.2 PARETE BASE

Coordinate sezione in calcestruzzo

Vertice	X	у
1	0.00	0.00
2	0.00	70.00
3	100.00	70.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	ø	X	у
1	20.0	8.00	62.00
2	20.0	22.00	62.00
3	20.0	36.00	62.00
4	20.0	50.00	62.00
5	20.0	64.00	62.00
6	20.0	78.00	62.00
7	20.0	92.00	62.00
8	16.0	92.00	8.00
9	16.0	78.00	8.00
10	16.0	64.00	8.00
11	16.0	50.00	8.00
12	16.0	36.00	8.00
13	16.0	22.00	8.00
14	16.0	8.00	8.00

- Combinazione di Carico: 3

Azione	Sd	Sr	
N	-30890.0	-50519.2	[kg]
Mx	28254.0	46208.2	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.61

- Combinazione di Carico: 6

Azione	Sd	Sr	
N	-27113.0	-45416.9	[kg]
Mx	-36732.0	-61529.7	[kgm]
Му	0.0	0.0	[kgm]

Sd/Sr=0.60

28.3 PARETE SOMMITA'

Coordinate sezione in calcestruzzo

Vertice	X	У
1	0.00	0.00
2	0.00	70.00
3	100.00	70.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	ø	x	у
1	16.0	8.00	62.00
2	16.0	22.00	62.00
3	16.0	36.00	62.00
4	16.0	50.00	62.00
5	16.0	64.00	62.00
6	16.0	78.00	62.00
7	16.0	92.00	62.00
8	20.0	92.00	8.00
9	20.0	78.00	8.00
10	20.0	64.00	8.00
11	20.0	50.00	8.00
12	20.0	36.00	8.00
13	20.0	22.00	8.00
14	20.0	8.00	8.00

- Combinazione di Carico: 3a

Azione	Sa	5r
N	-30890.0	-76728.5 [kg]

Mx 28255.0 70183.4 [kgm] My 0.0 0.0 [kgm]

Sd/Sr=0.40

- Combinazione di Carico: 3b

Azione	Sd	Sr	
N	-20796.0	-32569.4	[kg]
Mx	36955.0	57876.6	[kgm]
Му	0.0	0.0	[kgm]

Sd/Sr=0.64

28.4 PLATEA

Coordinate sezione in calcestruzzo

Vertice	X	у
1	0.00	0.00
2	0.00	150.00
3	100.00	150.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	Ø	x	у
1	18.0	7.00	143.00
2	18.0	21.33	143.00
3	18.0	35.67	143.00
4	18.0	50.00	143.00
5	18.0	64.33	143.00
6	18.0	78.67	143.00
7	18.0	93.00	143.00
8	18.0	93.00	7.00
9	18.0	78.67	7.00
10	18.0	64.33	7.00
11	18.0	50.00	7.00
12	18.0	35.67	7.00
13	18.0	21.33	7.00
14	18.0	7.00	7.00

- Combinazione di Carico: 3a

Azione Sd Sr

N -23951.0 -63029.4 [kg] Mx 51487.0 135493.0 [kgm] My 0.0 0.0 [kgm]

Sd/Sr=0.38

- Combinazione di Carico: 6

Azione Sd Sr

N -11616.0 -20344.1 [kg]
Mx -60848.0 -106568.4 [kgm]
My 0.0 -0.0 [kgm]

Sd/Sr=0.57

- Combinazione di Carico: 3b

Azione Sd Sr

N -11747.0 -17271.0 [kg]
Mx 71051.0 104462.4 [kgm]
My 0.0 0.0 [kgm]

Sd/Sr=0.68

28.5 SOLETTA A SBALZO

Coordinate sezione in calcestruzzo

Vertice x y 1 0.00 0.00 2 0.00 50.00 3 100.00 50.00 4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø x y

- 1 24.0 93.00 7.00
- 2 24.0 78.67 7.00
- 3 24.0 64.33 7.00
- 4 24.0 50.00 7.00

prof. ing. Claudio Comastri
dott. ing. Rodolfo Biondi
dott. ing. Giuseppe Federici
dott. geol. Luca Domenico Venanti
5 24.0 35.67 7.00
6 24.0 21.33 7.00
7 24.0 7.00 7.00

9 16.0 21.33 43.00

16.0 7.00 43.00

8

10 16.0 35.67 43.00

11 16.0 50.00 43.00

12 16.0 64.33 43.00

13 16.0 78.67 43.00

14 16.0 93.00 43.00

- Combinazione di Carico: 3

 Azione
 Sd
 Sr

 N
 0.0
 0.0
 [kg]

 Mx
 35254.0
 46417.0
 [kgm]

 My
 0.0
 0.0
 [kgm]

Sd/Sr=0.76

MURO TIPOLOGIA F - TRATTO 2

Le verifiche STR e GEO vengono effettuate considerando **l'approccio 2**, ovvero un'unica combinazione di carico **A1+M1+R3**.

29 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

Per effettuare il dimensionamento della struttura è stata realizzata una modellazione con il codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033 Casalecchio di Reno (BO).

La struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

- elementi verticali "pilastro": Sez. 1 - Muro di base di sezione in ca 50x100 cm, Sez. 2 - Muro di sommità, dall'estradosso della fondazione a quota 3,27 m, di sezione in ca 50x100 cm;

Il modello è sottoposto ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Il vincolamento esterno è simulato dalla presenza della trave di fondazione, per mezzo di un elemento beam di sezione 6,80x1,00 m; la quale è vincolata all'esterno attraverso due aste di lunghezza 15 m, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della profondità. Per la valutazione delle caratteristiche geometriche di una molla che simulasse correttamente il comportamento del terreno è stata imposta l'uguaglianza tra la sua deformazione assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella.

Modellazione dei materiali

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato pali $E_c = 315\ 000\ daN/cm^2\ per\ Rck \ge 300\ daN/cm^2$

Cls armato fondazione e parete $E_c = 336~000~daN/cm^2~per~Rck \ge 350~daN/cm^2$

Acciaio $E_a = 2 100 000 \text{ daN/cm}^2$

Tipo di analisi

Le strutture sono state sottoposte ad una analisi statica con elementi tipo FRAME e alla verifica con il metodo degli stati limite.

30 ANALISI DEI CARICHI

Peso Proprio (P₁):

Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di ca pari	2500 daN/m ³
a:	
Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di acciaio	7850 daN/m³
pari a:	

Spinte laterali del terreno sulla parete (P_2)

Assumendo per il terreno a tergo della parete γ =1,8 t/m³; c = 0,0; ϕ = 30° ed in ipotesi di spinta attiva (k_a = 0,333) si ricava un carico lineare con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: σ = γ · h · k_a.

z = 0	$\sigma = 0$
z = -3,00 m	σ = 1800 daN/mq
z = -4.75 m	σ = 2850 daN/mq

Peso Portato (P₃):

Carico permanente dovuto al rivestimento (pietra sp. 30 cm) considerando	2000 daN/m ³
un peso per unità di volume pari a	2000 dain/iii

Azioni sismiche $(P_4 - P_5 - P_7)$

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nel nostro caso, a favore di sicurezza, si suppone:

- il coefficiente $\beta m = 1,00$;
- l'incremento di spinta dovuta al sisma applicato a metà altezza del muro.

2		Zona sismica
В		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long.
		12,523762 °]
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione
		orizzontale
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

k _V 0	0.161	[Coefficiente sismico per sisma verticale]
N	7.101	[Coefficiente sistifico per sistifia verticale]

Valutazione dei pesi:

Parete in c.a. sp. 0,50 m W = 5,10 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mq W = 2,40 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale $S_{oizr} = 2,42 \text{ t al metro lineare di parete (in profondità)}$

Spinta verticale $S_{vert} = 1,21 t$ al metro lineare di parete (in profondità)

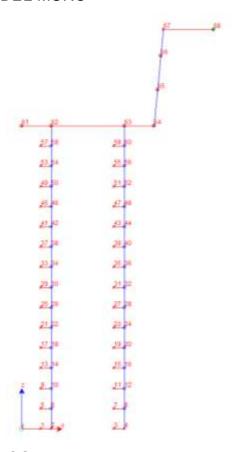
Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

q_{oriz} = 0,510 t al metro lineare di parete (in profondità)

q_{vert} = 0,255 t al metro lineare di parete (in profondità)

Sovraccarico sommitale (P₆):

Si ipotizza un sovraccarico sulla soletta a sbalzo a monte di 1000 daN/mg.


Al modello si applica un sovraccarico uniforme lineare sulla soletta di 1000 daN/ml, inoltre in ipotesi di spinta attiva ($k_a = 0.333$) si ricava un carico orizzontale lungo la parete del muro lineare uniforme, dovuto al sovraccarico di :

S_{sovr} = 333 daN al metro lineare di parete (in profondità)

Applicato in sommità per i primi tre metri di altezza.

31 MODELLO STRUTTURALE

31.1 SCHEMA DI CALCOLO DEL MURO

31.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER +	Q_SOMMITA'	SISMA VER -
1	1	1,	1,	0,	0,	0,	0,	0,
2	2	1,	1,	1,5	0,	0,	0,	0,
3	3	1,3	1,3	1,5	0,	0,	1,5	0,
4	S1	1,	1,	1,	1,	0,	0,6	0,
5	S2	1,	1,	1,	1,	1,	0,6	0,
6	S3	1,	1,	1,	1,	0,	0,6	1,

31.3 RISULTATI DELL'ANALISI

MODELLI_DI_CALCOLO\TIPOLOGIA_F\TIPOLOGIA_F2\MODELLO_F2_GEO_STR_V_03.dt

Pilastro Sezione numero 1 Rett. Muro di base

Sforzo normale	Min asta 65 66 4104.9 [kg]	Comb. 1 Max asta 64 65 22080.0 [kg]	Comb. 6
Taglio piano 1-2	Min asta 64 65 -8532.0 [kg]	Comb. 4 Max asta 65 66 22.9 [kg]	Comb. 2
Taglio piano 1-3	Min asta 65 66 0.0 [kg]	Comb. 2 Max asta 65 66 0.0 [kg]	Comb. 3

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Momento torcente	Min asta 65 66	0.0 [kgm]	Comb. 2	2 Max	asta 64 (65 O.	.0 [kgm]	Comb.	3
Momento Flet. piano 1-2	Min asta 64 65	-9793.1 [kgm]	Comb. 4	4 Max	asta 65 (56 88	805.8 [kgm]	Comb.	3
Momento Flet. piano 1-3	Min asta 65 66	0.0 [kgm]	Comb. 2	2 Max	asta 64 (65 O.	.0 [kgm]	Comb.	3

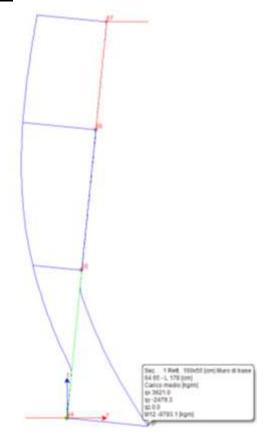
Pilastro Sezione numero 2 Rett. Muro di sommità

Sforzo normale	Min asta 66 67	2437.7 [kg]	Comb. 1 Max as	sta 66 67	10490.5 [kg]	Comb. 6
Taglio piano 1-2	Min asta 66 67	-787.1 [kg]	Comb. 4 Max as	sta 66 67	685.7 [kg]	Comb. 3
Taglio piano 1-3	Min asta 66 67	0.0 [kg]	Comb. 2 Max as	sta 66 67	0.0 [kg]	Comb. 3
Momento torcente	Min asta 66 67	0.0 [kgm]	Comb. 2 Max as	sta 66 67	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 66 67	3001.2 [kgm]	Comb. 1 Max as	sta 66 67	8839.7 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 66 67	-0.0 [kgm]	Comb. 3 Max as	sta 66 67	0.0 [kgm]	Comb. 3

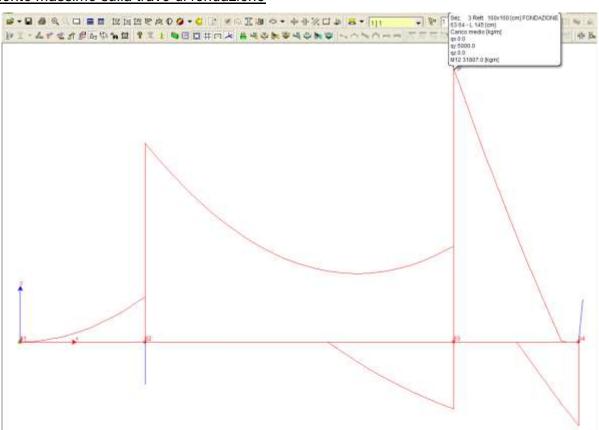
Pilastro Sezione numero 3 Circolare PALO

Sforzo normale	Min asta 63 60 11	1299.8 [kg]	Comb. 1 Max asta 63	60 34113.9 [kg]	Comb. 6
Taglio piano 1-2	Min asta 36 32 -2.	2.0 [kg]	Comb. 3 Max asta 14	10 1.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 63 60 -53	348.1 [kg]	Comb. 3 Max asta 14	10 348.2 [kg]	Comb. 3
Momento torcente	Min asta 63 60 -0.	0.0 [kgm]	Comb. 3 Max asta 60	56 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 12 8 -0.	0.0 [kgm]	Comb. 4 Max asta 36	32 3.3 [kgm]	Comb. 4
Momento Flet. piano 1-3	Min asta 63 60 -2	21278.0 [kgm]	Comb. 3 Max asta 58	62 18917.5 [kgm]	Comb. 3

Trave Sezione numero 3 Rett. FONDAZIONE

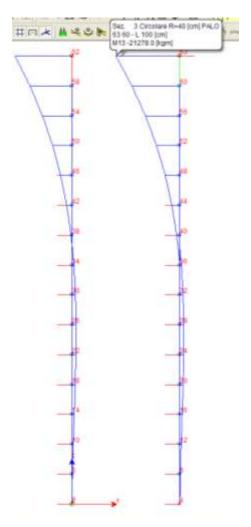

Sforzo normale	Min asta 61 62 0.0 [kg]	Comb. 1 Max asta 63 64 10363.0 [kg]	Comb. 3
Taglio piano 1-2	Min asta 61 62 -7250.0 [kg	Comb. 6 Max asta 63 64 28450.7 [kg]	Comb. 6
Taglio piano 1-3	Min asta 61 62 -0.0 [kg]	Comb. 3 Max asta 62 63 0.0 [kg]	Comb. 3
Momento torcente	Min asta 62 63 -0.0 [kgm]	Comb. 3 Max asta 63 64 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	2 Min asta 63 64 -9793.1 [kg	m] Comb. 4 Max asta 63 64 31807.0 [kgm]	Comb. 6
Momento Flet. piano 1-3	3 Min asta 62 63 -0.0 [kgm]	Comb. 3 Max asta 62 63 0.0 [kgm]	Comb. 3

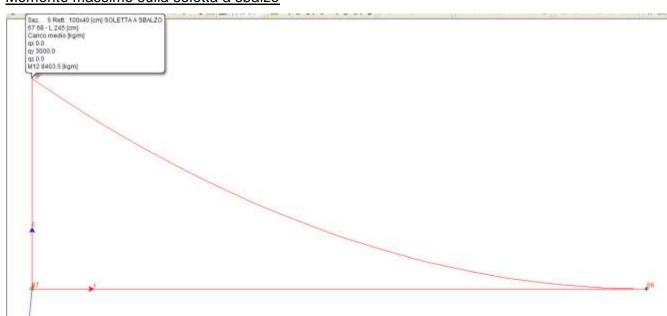
Trave Sezione numero 6 Rett. SOLETTA A SBALZO


Sforzo normale	Min asta 67 68 -0.0 [kg]	Comb. 5 Max asta 67 68 0.0 [kg]	Comb. 1
Taglio piano 1-2	Min asta 67 68 -0.0 [kg]	Comb. 3 Max asta 67 68 6860.0 [kg]	Comb. 3
Taglio piano 1-3	Min asta 67 68 0.0 [kg]	Comb. 1 Max asta 67 68 0.0 [kg]	Comb. 1
Momento torcente	Min asta 67 68 0.0 [kgm]	Comb. 2 Max asta 67 68 0.0 [kgm]	Comb. 4
Momento Flet. piano 1-2	Min asta 67 68 -0.0 [kgm]	Comb. 6 Max asta 67 68 8403.5 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 67 68 -0.0 [kgm]	Comb. 1 Max asta 67 68 -0.0 [kgm]	Comb. 1

31.4 RAPPRESENTAZIONE GRAFICA

Momento massimo sulla parete


Momento massimo sulla trave di fondazione


prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Momento massimo sui pali

Momento massimo sulla soletta a sbalzo

32 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 3.00 m si ha:

PALO	N [daN]	M [daNm]
Combo 3	72238 [compres]	63834
Combo 6	102342 [compres]	61905

PARETE sp. 50 cm

PARETE	N [daN]	M [daNm]
Combo 4	13692 [compres]	-9793
Combo 3	9595 [compres]	8840
Combo 6	22080 [compres]	- 4190

PLATEA DI FONDAZIONE h = 100 cm

PLATEA	N [daN]	M [daNm]
Combo 3	10363 [compres]	26488
Combo 6	9858 [compres]	31807

SOLETTA A SBALZO

PLATEA	N [daN]	M [daNm]
Combo 3	0	8405

33 VERIFICA ELEMENTI STRUTTURALI

33.1 PALO

Coordinate sezione in calcestruzzo

Vertice	x	у
1	40.00	0.00
2	39.23	-7.80
3	36.96	-15.31
4	33.26	-22.22
5	28.28	-28.28

6	22.22	-33.26
7	15.31	-36.96
8	7.80	-39.23
9	0.00	-40.00
10	-7.80	-39.23
11	-15.31	-36.96
12	-22.22	-33.26
13	-28.28	-28.28
14	-33.26	-22.22
15	-36.96	-15.31
16	-39.23	-7.80
17	-40.00	0.00
18	-39.23	7.80
19	-36.96	15.31
20	-33.26	22.22
21	-28.28	28.28
22	-22.22	33.26
23	-15.31	36.96
24	-7.80	39.23
25	0.00	40.00
26	7.80	39.23
27	15.31	36.96
28	22.22	33.26
29	28.28	28.28
30	33.26	22.22
31	36.96	15.31
32	39.23	7.80

Coordinate e diametro ferri di armatura

Ferro	Ø	X	у
1	18.0	34.71	0.00
2	18.0	33.01	10.73
3	18.0	28.08	20.40
4	18.0	20.40	28.08
5	18.0	10.73	33.01
6	18.0	-0.00	34.71

dott. geol. Luca Domenico Venanti

- 7 18.0 -10.73 33.01
- 8 18.0 -20.40 28.08
- 9 18.0 -28.08 20.40
- 10 18.0 -33.01 10.73
- 11 18.0 -34.71 -0.00
- 12 18.0 -33.01 -10.73
- 13 18.0 -28.08 -20.40
- 14 18.0 -20.40 -28.08
- 15 18.0 -10.73 -33.01
- 16 18.0 0.00 -34.71
- 17 18.0 10.73 -33.01
- 18 18.0 20.40 -28.08
- 19 18.0 28.08 -20.40
- 20 18.0 33.01 -10.73

- Combinazione di Carico: 3

Azione Sd Sr

N -72238.0 -85173.6 [kg] Mx 63834.0 75264.7 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.85

- Combinazione di Carico: 6

Azione Sd Sr

N -102342.0 -137088.3 [kg]

Mx 61905.0 82922.5 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.75

33.2 PARETE

Coordinate sezione in calcestruzzo

Vertice	X	у
1	0.00	0.00
2	0.00	50.00
3	100.00	50.00

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø x y

- 1 14.0 8.00 62.00
- 2 14.0 22.00 62.00
- 3 14.0 36.00 62.00
- 4 14.0 50.00 62.00
- 5 14.0 64.00 62.00
- 6 14.0 78.00 62.00
- 7 14.0 92.00 62.00
- 8 14.0 92.00 8.00
- 9 14.0 78.00 8.00
- 10 14.0 64.00 8.00
- 11 14.0 50.00 8.00
- 12 14.0 36.00 8.00
- 13 14.0 22.00 8.00
- 14 14.0 8.00 8.00

- Combinazione di Carico: 3

Azione Sd Sr

N -9595.0 -23458.6 [kg]

Mx 8840.0 21612.7 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.41

- Combinazione di Carico: 4

Azione Sd Sr

N -13692.0 -32786.5 [kg]

Mx -9793.0 -23450.1 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.42

- Combinazione di Carico: 6

Azione Sd Sr

N -22080.0 -327132.4 [kg]

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Mx -4190.0 -62078.1 [kgm]

My 0.0 -0.0 [kgm]

Sd/Sr=0.07

33.3 PLATEA

Coordinate sezione in calcestruzzo

Vertice x y 1 0.00 0.00 2 0.00 100.00 3 100.00 100.00 4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø X 1 18.0 7.00 93.00 2 18.0 21.33 93.00 3 18.0 35.67 93.00 18.0 50.00 93.00 5 18.0 64.33 93.00 18.0 78.67 93.00 6 7 18.0 93.00 93.00 8 18.0 93.00 7.00 9 18.0 78.67 7.00 18.0 64.33 7.00 10 11 18.0 50.00 7.00 18.0 35.67 7.00 12

- Combinazione di Carico: 3

Azione Sd Sr

18.0 21.33 7.00

18.0 7.00 7.00

N -10363.0 -28249.5 [kg] Mx 26488.0 72206.3 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.37

13

14

- Combinazione di Carico: 6

dott. geol. Luca Domenico Venanti

Azione Sd Sr

N -9858.0 -21450.6 [kg] Mx 31807.0 69210.7 [kgm]

My 0.0 -0.0 [kgm]

Sd/Sr=0.46

33.4 SOLETTA A SBALZO

Coordinate sezione in calcestruzzo

Vertice x y 1 0.00 0.00 2 0.00 40.00 3 100.00 40.00 4 100.00 0.00

Coordinate e diametro ferri di armatura

Ferro ø х у 1 14.0 92.00 8.00 2 14.0 78.00 8.00 3 14.0 64.00 8.00 4 14.0 50.00 8.00 5 14.0 36.00 8.00 6 14.0 22.00 8.00 7 14.0 8.00 8.00 8 12.0 8.00 32.00 12.0 22.00 32.00 9 10 12.0 36.00 32.00 12.0 50.00 32.00 11 12 12.0 64.00 32.00 13 12.0 78.00 32.00

- Combinazione di Carico: 3

12.0 92.00 32.00

14

Azione	Sd	Sr	
N	0.0	-0.0	[kg]
Mx	8405.0	13045.8	[kgm]
My	0.0	0.0	[kam]

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Sd/Sr=0.64

MURO TIPOLOGIA F - TRATTO 3

Le verifiche STR e GEO vengono effettuate considerando l'approccio 2, ovvero un'unica

combinazione di carico A1+M1+R3.

34 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

Per effettuare il dimensionamento della struttura è stata realizzata una modellazione con il

codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l. via Tizzano 46/2, 40033

Casalecchio di Reno (BO).

La struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di

tipo FRAME:

elementi verticali "pilastro": Sez. 1 - Muro di base di sezione in ca 40x100 cm.

Il modello è sottoposto ai carichi statici previsti dalla normativa vigente, per quanto riguarda

l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

Il vincolamento esterno è simulato dalla presenza della trave di fondazione, per mezzo di un

elemento beam di sezione 6,00x1,00 m; la quale è vincolata all'esterno attraverso due aste di

lunghezza 15 m, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono

disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da

una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della

profondità. Per la valutazione delle caratteristiche geometriche di una molla che simulasse

correttamente il comportamento del terreno è stata imposta l'uguaglianza tra la sua deformazione

assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate

all'esterno con degli incastri ed è stato imposto un comportamento a biella.

Modellazione dei materiali

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato fondazione e parete

 E_c = 315 000 daN/cm² per Rck \geq 300 daN/cm²

 E_c = 336 000 daN/cm² per Rck \geq 350 daN/cm²

Acciaio

 $E_a = 2 100 000 \text{ daN/cm}^2$

Tipo di analisi

Cls armato pali

INTERVENTO DI CONSOLIDAMENTO PARIETALE DELLA RUPE DI MASSA MARTANA – Completamento degli interventi in

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Le strutture sono state sottoposte ad una analisi statica con elementi tipo FRAME e alla verifica con il metodo degli stati limite.

35 ANALISI DEI CARICHI

Peso Proprio (P_1) :

Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di ca pari	2500 daN/m ³
a:	
Il programma provvede al calcolo automatico di tutti gli elementi	
componenti il modello considerando un peso per unità di volume di acciaio	7850 daN/m³
pari a:	

Spinte laterali del terreno sulla parete (P2)

Assumendo per il terreno a tergo della parete γ =1,8 t/m³; c = 0,0; ϕ = 30° ed in ipotesi di spinta attiva (k_a = 0,333) si ricava un carico lineare con distribuzione triangolare con vertice in alto i cui valori sono calcolati con la seguente relazione: σ = γ · h · k_a.

z = 0	$\sigma = 0$
z = -2.90 m	σ = 1740 daN/mq

Peso Portato (P_3) :

Carico permanente dovuto al rivestimento (pietra sp. 30 cm) considerando	2000 daN/m ³
un peso per unità di volume pari a	2000 dal\/III

Azioni sismiche $(P_4 - P_5 - P_7)$

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nel nostro caso, a favore di sicurezza, si suppone:

- il coefficiente βm =1,00;

- l'incremento di spinta dovuta al sisma applicato a metà altezza del muro.

2		Zona sismica
В		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long.
		12,523762 °]
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione
		orizzontale
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]
k _V	0.161	[Coefficiente sismico per sisma verticale]

Valutazione dei pesi:

Parete in c.a. sp. 0,40 m W = 2,90 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mq W = 1,75 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale S_{oizr} = 1,50 t al metro lineare di parete (in profondità)

Spinta verticale $S_{vert} = 0.75 t$ al metro lineare di parete (in profondità)

Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

q_{oriz} = 0,510 t al metro lineare di parete (in profondità)

q_{vert} = 0,255 t al metro lineare di parete (in profondità)

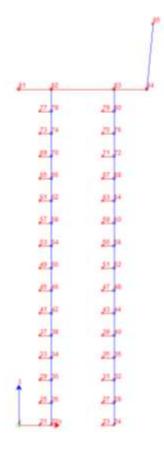
Sovraccarico sommitale (P_6) :

Si ipotizza un sovraccarico a monte di 1000 daN/mg.

Al modello si applica, in ipotesi di spinta attiva ($k_a = 0.333$), un carico orizzontale lungo la parete del muro lineare uniforme, dovuto al sovraccarico di :

S_{sovr} = 333 daN al metro lineare di parete (in profondità)

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi


dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Applicato in sommità per i primi tre metri di altezza.

36 MODELLO STRUTTURALE

31.5 SCHEMA DI CALCOLO DEL MURO

31.6 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER +	Q_SOMMITA'	SISMA VER -
1	1	1,	1,	0,	0,	0,	0,	0,
2	2	1,	1,	1,5	0,	0,	0,	0,
3	3	1,3	1,3	1,5	0,	0,	1,5	0,
4	S1	1,	1,	1,	1,	0,	0,6	0,
5	S2	1,	1,	1,	1,	1,	0,6	0,
6	S3	1,	1,	1,	1,	0,	0,6	1,

31.7 RISULTATI DELL'ANALISI

TIPOLOGIA_F\TIPOLOGIA_F3\MODELLO_F3_GEO_STR_V01.dt

Pilastro Sezione numero 1 Rett. Muro di base

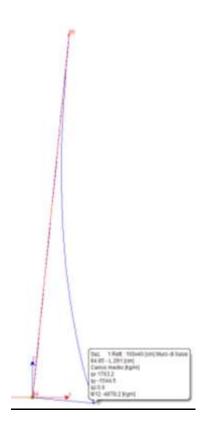
Sforzo normale Min asta 84 85 -0.0 [kg] Comb. 4 Max asta 84 85 6853.9 [kg] Comb. 3

INTERVENTO DI CONSOLIDAMENTO PARIETALE DELLA RUPE DI MASSA MARTANA – Completamento degli interventi in parete e del ciglio superiore nel tratto compreso tra Via delle Piagge e Via del Mattatoio vecchio

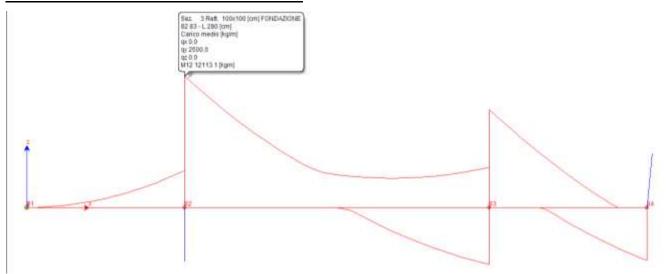
K:\COMMESSE\2014\2014\2014\2014\2014\2014\REGIONE_UMBRIA_RUPE_VI\2_PROGETTAZIONE\RELAZIONI\C_REL_01_2014_04_E0_A_V_08.doc

Taglio piano 1-2	Min asta 84 85	-4188.8 [kg]	Comb. 6 Max asta	84 85	29.5 [kg]	Comb. 2
Taglio piano 1-3	Min asta 84 85	0.0 [kg]	Comb. 2 Max asta	84 85	0.0 [kg]	Comb. 3
Momento torcente	Min asta 84 85	0.0 [kgm]	Comb. 2 Max asta	84 85	0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 84 85	-4878.2 [kgm]	Comb. 6 Max asta	84 85	12.9 [kgm]	Comb. 2
Momento Flet. piano 1-3	Min asta 84 85	-0.0 [kgm]	Comb. 3 Max asta	84 85	0.0 [kgm]	Comb. 3

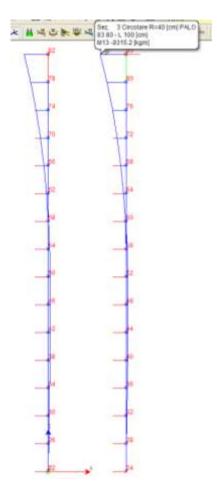
Pilastro Sezione numero 3 Circolare PALO


Sforzo normale	Min asta 83 80 5218.7	[kg] Comb. 6	Max asta 78 82	13933.1 [kg]	Comb. 3
Taglio piano 1-2	Min asta 56 52 -0.8 [k	[g] Comb. 3	Max asta 34 30	0.5 [kg]	Comb. 6
Taglio piano 1-3	Min asta 83 80 -2419.	5 [kg] Comb. 3	Max asta 34 30	167.0 [kg]	Comb. 6
Momento torcente	Min asta 83 80 -0.0 [k	gm] Comb. 3	Max asta 80 76	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 26 22 -0.0 [k	gm] Comb. 3	Max asta 56 52	1.8 [kgm]	Comb. 6
Momento Flet, piano 1-3	Min asta 83 80 -9315.	2 [kgm] Comb. 3]	Max asta 78 82	8696.5 [kgm]	Comb. 3

Trave Sezione numero 3 Rett. FONDAZIONE


Sforzo normale	Min asta 81 82	0.0 [kg]	Comb. 1 Max asta 83 8	4 4751.4 [kg]	Comb. 3
Taglio piano 1-2	Min asta 81 82	-4712.5 [kg]	Comb. 3 Max asta 83 8	4 11123.5 [kg]	Comb. 3
Taglio piano 1-3	Min asta 81 82	-0.0 [kg]	Comb. 6 Max asta 82 8	3 0.0 [kg]	Comb. 3
Momento torcente	Min asta 82 83	-0.0 [kgm]	Comb. 3 Max asta 83 8	4 0.0 [kgm]	Comb. 3
Momento Flet. piano 1-2	Min asta 82 83	-5241.7 [kgm]	Comb. 6 Max asta 82 8	3 12113.1 [kgm]	Comb. 3
Momento Flet. piano 1-3	Min asta 82 83	-0.0 [kgm]	Comb. 3 Max asta 82 8	3 0.0 [kgm]	Comb. 3

31.8 RAPPRESENTAZIONE GRAFICA


Momento massimo sulla parete

Momento massimo sulla trave di fondazione

Momento massimo sui pali

37 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 5.10 m si ha:

dott. geol. Luca Domenico Venanti

PALO	N [daN]	M [daNm]
Combo 3a	71058 [compres]	44355
Combo 3b	56115 [compres]	-47507

PARETE sp. 40 cm

PARETE	N [daN]	M [daNm]
Combo 6	4360 [compres]	- 4880

PLATEA DI FONDAZIONE h = 100 cm

PLATEA	N [daN]	M [daNm]
Combo 3a	4752 [compres]	8350
Combo 3b	2332 [compres]	12113

38 VERIFICA ELEMENTI STRUTTURALI

38.1 PALO

Coordinate sezione in calcestruzzo

Vertice	x	у	σ
1	40.00	0.00	0.0
2	39.23	-7.80	-73.9
3	36.96	-15.31	-123.8
4	33.26	-22.22	-141.4
5	28.28	-28.28	-141.7
6	22.22	-33.26	-141.7
7	15.31	-36.96	-141.7
8	7.80	-39.23	-141.7
9	0.00	-40.00	-141.7
10	-7.80	-39.23	-141.7
11	-15.31	-36.96	-141.7
12	-22.22	-33.26	-141.7
13	-28.28	-28.28	-141.7
14	-33.26	-22.22	-141.4
15	-36.96	-15.31	-123.8
16	-39.23	-7.80	-73.9

17	-40.00	0.00	0.0
18	-39.23	7.80	0.0
19	-36.96	15.31	0.0
20	-33.26	22.22	0.0
21	-28.28	28.28	0.0
22	-22.22	33.26	0.0
23	-15.31	36.96	0.0
24	-7.80	39.23	0.0
25	0.00	40.00	0.0
26	7.80	39.23	0.0
27	15.31	36.96	0.0
28	22.22	33.26	0.0
29	28.28	28.28	0.0
30	33.26	22.22	0.0
31	36.96	15.31	0.0
32	39.23	7.80	0.0

Coordinate e diametro ferri di armatura

Ferro ø X 1 18.0 34.71 0.00 18.0 33.01 10.73 2 3 18.0 28.08 20.40 4 18.0 20.40 28.08 18.0 10.73 33.01 5 6 18.0 -0.00 34.71 7 18.0 -10.73 33.01 18.0 -20.40 28.08 8 9 18.0 -28.08 20.40 10 18.0 -33.01 10.73 11 18.0 -34.71 -0.00 12 18.0 -33.01 -10.73 13 18.0 -28.08 -20.40 14 18.0 -20.40 -28.08 15 18.0 -10.73 -33.01 16 18.0 0.00 -34.71 17 18.0 10.73 -33.01 18 18.0 20.40 -28.08

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

19 18.0 28.08 -20.40

20 18.0 33.01 -10.73

- Combinazione di Carico: 3°

Azione Sd Sr

N -71058.0 -131681.6 [kg]

Mx 44355.0 82196.7 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.54

- Combinazione di Carico: 3b

Azione Sd Sr

N -56115.0 -89771.6 [kg]

Mx -47507.0 -76000.7 [kgm]

My 0.0 0.0 [kgm]

Sd/Sr=0.63

38.2 PARETE

Coordinate sezione in calcestruzzo

Vertice	X	У
1	0.00	0.00
2	0.00	40.00
3	100.00	40.00
4	100.00	0.00

Coordinate e diametro ferri di armatura

Ferro ø x y

- 1 12.0 92.00 8.00
- 2 12.0 78.00 8.00
- 3 12.0 64.00 8.00
- 4 12.0 50.00 8.00
- 5 12.0 36.00 8.00
- 6 12.0 22.00 8.00
- 7 12.0 8.00 8.00
- 8 14.0 8.00 32.00
- 9 14.0 22.00 32.00

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

10 14.0 36.00 32.00

11 14.0 50.00 32.00

12 14.0 64.00 32.00

13 14.0 78.00 32.00

14 14.0 92.00 32.00

- Combinazione di Carico: 3

AzioneSdSrN-4360.0 -13529.9 [kg]Mx-4880.0 -15143.5 [kgm]My0.00.0 [kgm]

Sd/Sr=0.32

38.3 PLATEA

Coordinate sezione in calcestruzzo

٧	ertice	X	У
1		0.00	0.00
2		0.00	100.00
3		100.00	100.00
4		100.00	0.00

Coordinate e diametro ferri di armatura

Ferro	Ø	X	у
1	18.0	7.00	93.00
2	18.0	21.33	93.00
3	18.0	35.67	93.00
4	18.0	50.00	93.00
5	18.0	64.33	93.00
6	18.0	78.67	93.00
7	18.0	93.00	93.00
8	18.0	93.00	7.00
9	18.0	78.67	7.00
10	18.0	64.33	7.00
11	18.0	50.00	7.00
12	18.0	35.67	7.00
13	18.0	21.33	7.00
14	18.0	7.00	7.00

- Combinazione di Carico: 3a

 Azione
 Sd
 Sr

 N
 -4752.0 -45347.6 [kg]

 Mx
 8350.0 79682.8 [kgm]

 My
 0.0 0.0 [kgm]

Sd/Sr=0.10

- Combinazione di Carico: 3b

 Azione
 Sd
 Sr

 N
 -2332.0
 -12567.3 [kg]

 Mx
 12113.0
 65277.6 [kgm]

 My
 0.0
 0.0 [kgm]

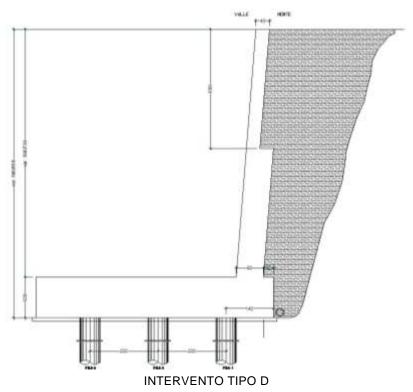
 Sd/Sr=0.19

MURO TIPOLOGIA F - TRATTO 4

Viene realizzato come il muro tipologia F tratto 2, poiché presenta stesso spessore della parete, ma con una altezza del muro e larghezza della soletta a sbalzo inferiori.

SOLETTA A SBALZO SU MURO ESISTENTE

SEZ. 55A - SEZ. 60


Il muro esistente è stato oggetto di una richiesta di autorizzazione presentata dalla Regione Umbria con protocollo n. 278674 del 02/07/2013 e rilasciata con protocollo n. 298321 del 12/07/2013.

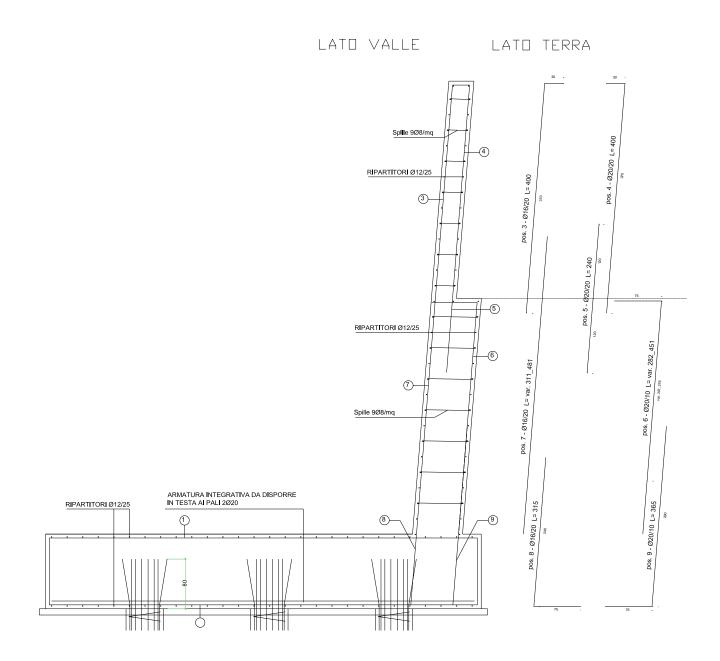
Si riporta qui di seguito la verifica del muro allegata alla autorizzazione citata.

39 MURO ESISTENTE: INTERVENTO TIPO D

L'intervento autorizzato consiste nella realizzazione di un muro di altezza variabile da un minimo di 5.60 m a un massimo di 7.30 m. Lo spessore della parete sarà di 80 cm nella parte inferiore per un'altezza variabile, mentre la porzione superiore, dello spessore di 40 cm, avrà altezza costante pari a 3.50 m. Il paramento esterno presenta una inclinazione sulla verticale di circa 5°. La fondazione è costituita da una platea di larghezza variabile e altezza 1,20 m fondata su pali

del diametro di 60 cm e lunghezza 15,00 m, posti ad interasse trasversale e longitudinale di 2,00 m.

Nel modello di calcolo è stato applicato un sovraccarico stradale di 500 daN/m, che si ritiene essere congruo per l'uso che viene fatto delle strade e in considerazione del fatto che entrambe sono chiuse al traffico.


In particolare la strada posta a monte è un accesso privato a dei garage e presenta una larghezza tale da consentire il transito di un solo veicolo alla volta, per quanto riguarda la strada al piede viene utilizzata solo per la manutenzione.

I momenti dei verifica del muro nelle due sezioni significative erano:

- Sezione di base M = 85470 daNm

Sezione a guota – 3.50 m
 M = 18050 daNm

Si allega il disegno dell'armatura del muro.

40 VERIFICA ELEMENTI STRUTTURALI

Il progetto prevede la demolizione di una parte della parete e la realizzazione di un percorso pedonale a sbalzo dal muro esistente.

La parete in sommità viene demolita per una altezza di 1.15 m e viene realizzata una soletta a sbalzo della larghezza media di 2.40 m e spessore 40 cm.

Considerando un modello di calcolo di trave incastrata sul muro esistente e un sovraccarico di 1000 daN/mq (per uniformità con gli altri muri), con i fattori amplificativi dei carichi delle NTC08, si ottengono i seguenti valori delle sollecitazioni:

M = -8460 daNm

Questo momento flettente tende le fibre della parete poste sul lato di valle; pertanto, applicando il principio di sovrapposizione degli effetti, questo momento si va a sottrarre a quello valutato nella modellazione oggetto della citata autorizzazione.

Le sollecitazioni di verifica sono le seguenti:

- Sezione di base M = 77010 daNm comb. 8 AUTOMATICAMENTE VERIFICATA
- Sezione a quota 3.50 m M = 9590 daNm comb. 8 AUTOMATICAMENTE **VERIFICATA**

A queste sezioni si aggiunge la verifica della sezione di sommità avente una sollecitazione massima M = -8460 daNm che tende le fibre poste sul lato di valle del muro:

Azione Sd Sr 0.0 Ν 0.0 [kg] -8460.0 -12567.3 [kgm] Mx My 0.0 0.0 [kgm]

Sd/Sr=0.67

- Tensioni massime riscontrate

CALCESTRUZZO

Vertice x Epsilon (x1000) Sezione 0 σ

11 7

1 0.00 0.00 -135.6 -1.6

2 0.00 40.00 0.0 11.7

100.00 40.00 0.0

100.00 0.00 -135.6 -1.6 4

ACCIAIO

3

Epsilon Ferro (x1000) 20.0 95.00 5.00 126.9 1 0.1 2 20.0 72.50 5.00 126.9 0.1

dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti 3 20.0 50.00 5.00 126.9 0.1 4 20.0 27.50 5.00 126.9 0.1 5 0.1 20.0 5.00 5.00 126.9 6 16.0 5.00 35.00 3739.1 10.0 7 16.0 27.50 35.00 3739.1 10.0 8 16.0 50.00 35.00 3739.1 10.0 9 16.0 72.50 35.00 3739.1 10.0 10 16.0 95.00 35.00 3739.1 10.0

prof. ing. Claudio Comastri

41 CAPACITA' PORTANTE DEI PALI

I pali presentano un diametro di 60 cm e una lunghezza di 15,00 m, sono inseriti interamente nell'UNITA' DI ACQUASPARTA INALTERATA.

PORTANZA	DI PROGETTO)	Rc,k =	83907	daN		
			Rt,k =	-57855	daN		
Geometria pali							
L [m] =	15,00	Lunghezza					
d _{foro} [mm] =	600,00	Diametro p	erforazione				
P _{palo} =	10598	daN					
VERIFICHE	GEOTECN	ICHE- Pa	rametri m	edi			
_							
1 - U.A. ALTERA	ATA		2 -				
Spess. [∆H m]	15,00		Spess. [△H m]	0,00			
φ [°]=	28		φ [°]=				
γ [daN/mc]=	2050		γ [daN/mc]=				
c [daN/cmq]=	0		c [daN/cmq]=				
k =	0,40		k =	0,50			
μ=	0,53		μ=	0,00			
z [m] =	7,50		z [m] =	15,00			
Carico limite ve	erticale per ATTR	ITO LATERA	LE con formule	statiche			
TRASCURANDO	IL PRIMO METR	O DI PALO					
Q _{lim} =	$\Sigma(\Delta Lx \Delta Hx au)$						
Δ L	π xd _{foro}	Circonferen	za micropalo				
τ =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale			
k =	Coefficiente en		dente dalle mod	dalità di esed	uzior	ne del palo	
μ=	$\tan \ \varphi$	Coefficient	e di attrito				
NELLA VALUTA	ZIONE DEL CARIO	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI	MICROPAL	0

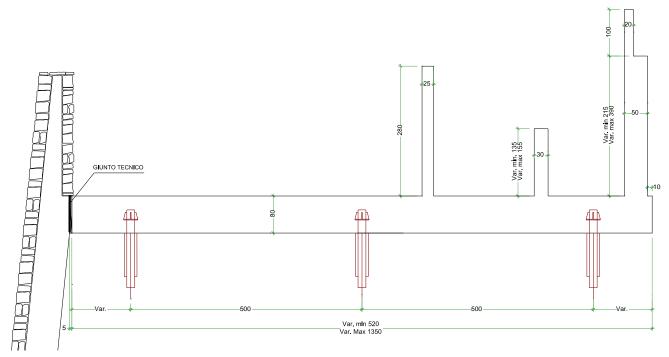
dott. geol. Luca Domenico Venanti

STRATO 1	86294	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-46023	daN	
STRATO 3	0	daN	R _{d,lat} compres=	50025	daN	
тот.	86294	daN				
Carico limite ve	rticale DI PUNT	A				
Q _{lim} =	Σ (N _c xc+N _q x σ ,	/)xA				
φ' ₁ [°]=	25		φ' ₂ [°]=	-3		
Nc1 =	18,2		Nc2 =	0		
Nq1 =	10,7		Nq2 =	0		
φ' ₃ [°]=	-3					
Nc3 =	0					
Nq3 =	0					
STRATO 1	92982	daN				
STRATO 2	0	daN				
STRATO 3	0	daN	R _{d,punta} =	45917	daN	
тот.	92982	daN				

VERIFICHE	GEOTECN	ICHE- Pa	rametri m	inimi		
1 - U.A. ALTERA	NTA		2 -			
Spess. [Δ H m]	15,00		Spess. [Δ H m]	0,00		
φ [°]=	26		φ [°]=			
γ [daN/mc]=	2050		γ [daN/mc]=			
c [daN/cmq]=	0		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ =	0,49		μ =	0,00		
z [m] =	7,50		z [m] =	15,00		
Carico limite ve	rticale per ATTF	RITO LATERA	LE con formule	statiche		
TRASCURANDO	IL PRIMO METR	O DI PALO				
Q _{lim} =	$\Sigma(\Delta Lx \Delta Hx au)$					
Δ L	π xd _{foro}	Circonferen	za micropalo			
τ =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale		
k =	Coefficiente en	npirico dipen	dente dalle mod	dalità di esed	cuzion	e del palo
μ=	tan φ	Coefficiente	di attrito			
NELLA VALUTAZ	ZIONE DEL CARI	CO LIMITE SI	TRASCURA IL P	RIMO METR	ODIN	ИICROPAL
STRATO 1	79156	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-47258	daN	
STRATO 3	0	daN	R _{d,lat} compres=	51367	daN	
тот.	79156	daN				

dott. geol. Luca Domenico Venanti

Carico limite ve	rticale DI PUNT	Α				
Q _{lim} =	$\Sigma(N_{c}xc+N_{q}x\sigma,$	_√)xA				
φ' ₁ [°]=	23		φ' ₂ [°]=	-3		
Nc1 =	16,4		Nc2 =	0		
Nq1 =	8,98		Nq2 =	0		
φ' ₃ [°]=	-3					
Nc3 =	0					
Nq3 =	0					
STRATO 1	78036	daN				
STRATO 2	0	daN				
STRATO 3	0	daN	R _{d,punta} =	43138	daN	
тот.	78036	daN				


Per effetto dell'inserimento della soletta a sbalzo si ottiene una decompressione del palo posto a valle e un incremento dello sforzo normale sul palo a monte che comunque resta al di sotto del valore della capacità portante.

MURI DI CIGLIO

Sul ciglio della rupe vengono realizzati dei muri di sostegno dell'altezza massima di 3,00 m; e parapetto di altezza 1.00 m. I muri di sostegno presentano uno spessore della parete di 30 cm e sono fondati sulle travi di ciglio.

La trave di ciglio ha una altezza di 0.80 m ed è fondata su tre file di micropali della lunghezza di 20 m, interasse longitudinale 2,50 m e interasse trasversale 5,00 m, Si omettono tutte le verifiche geotecniche: stabilità, scorrimento, ribaltamento, dal momento che non ci sono le condizioni geometriche per il loro verificarsi.

Vengono effettuate le verifiche di resistenza della parete, e le verifiche di resistenza dei micropali.

TRAVE E MURI DI CIGLIO

42 ANALISI PARETE

42.1 ANALISI DEI CARICHI

- Peso Proprio

Parete in elevazione 1350 daN/m

- Spinta laterale statica del terreno

Spinta **S** in condizioni $k_a = 0.333$ 2700 daN

- Azioni Sismiche

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

In questo caso dal momento che il muro è libero di ruotare intorno al piede, che la categoria di suolo è C e la categoria topografica è T2 il valore di β_m lo si ricava dalla tabella 7.11.II e la spinta viene applicata a metà altezza della parete.

2		Zona sismica
С		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long.
		12,523762 °]
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione
		orizzontale
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	0,24	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.078	[Coefficiente sismico per sisma orizzontale]
k _V	0.039	[Coefficiente sismico per sisma verticale]

Valutazione dei pesi:

Parete in c.a. sp. 0.30 m W = 2.25 t al metro lineare di parete (in profondità)

Rivestimento 0,60 t/mq W = 1,80 t al metro lineare di parete (in profondità)

Da cui si ricava:

Spinta orizzontale S_{oizr} = 0,32 t al metro lineare di parete (in profondità)

Spinta verticale S_{vert} = 0,16 t al metro lineare di parete (in profondità)

Pertanto il carico lineare uniformemente distribuito da applicare nel modello è:

q_{oriz} = 0,110 t al metro lineare di parete (in profondità)

q_{vert} = 0,055 t al metro lineare di parete (in profondità)

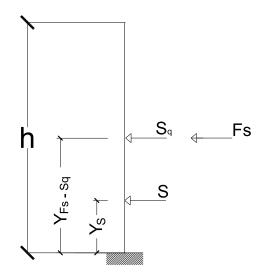
Sovraccarico

Si considera un sovraccarico a monte di 1000 daN/mq.

Spinta S_q in condizioni $k_a = 0.333$

333 daN

42.2 VERIFICA


Le sollecitazioni massime agenti sono state ricavate considerando un modello di calcolo di trave incastrata alla base di profondità unitaria. Le verifiche sono state condotte con il metodo degli stati limite.

$$h = 3,00 \text{ m}$$

$$Y_S = 1,00 \text{ m}$$
 $Y_q = 1.50 \text{ m}$ $Y_{FS} = 1,50 \text{ m}$

$$Y_q = 1.50 \text{ m}$$

$$Y_{Fs} = 1,50 \text{ m}$$

Applicando i coefficienti amplificativi e i valori dei coefficienti di combinazione previsti dalle NTC 2008 ai valori caratteristici dei carichi, nel caso di approccio di tipo 2, si ricava il momento di incastro:

M = 5800 daNm. In condizioni statiche

M = 3764 daNm. In condizioni sismiche

VERIFICA PARETE

Azione	Sd	Sr	
N	-5265.0	-9053.3	[kg]
Mx	-5800.0	-9973.3	[kgm]
Му	0.0	-0.0	[kgm]

Sd/Sr=0.58

Vertice	X	У	σ	Epsilon (x1000)	Sezione 0
1	0.00	0.00	-164.6	-2.5	
2	0.00	30.00	0.0	13.1	
3	100.00	30.00	0.0	13.1	
4	100.00	0.00	-164.6	-2.5	
Ferro	Ø	x	у	σ	Epsilon (x1000)
1	16.0	6.00	24.00	3739.1	10.0
2	16.0	28.00	24.00	3739.1	10.0
3	16.0	50.00	24.00	3739.1	10.0
4	16.0	72.00	24.00	3739.1	10.0
5	16.0	94.00	24.00	3739.1	10.0
6	16.0	94.00	6.00	1135.5	0.6
7	16.0	72.00	6.00	1135.5	0.6

dott. geol. Luca Domenico Venanti

8	16.0	50.00	6.00	1135.5	0.6
9	16.0	28.00	6.00	1135.5	0.6
10	16.0	6.00	6.00	1135.6	0.6

Progettista:

Prof. Ing. Claudio Comastri

RELAZIONE SULLE FONDAZIONI

1 PARAMETRIZZAZIONE GEOTECNICA DEI TERRENI

E' stata individuata la seguente parametrizzazione dei terreni:

- Depositi detritici di falda recenti (dt₁)

Sabbie e limi con inclusi clastici perlopiù travertinosi (sono le coperture detritiche nel versante al piede della rupe, esterne ai corpi di frana)

$$\gamma$$
 = 19.5 kN/m³ (peso di volume)
 ϕ' = 24-30° (angolo di attrito interno efficace)
 \mathbf{c}' = 8* kPa (coesione efficace)

- Corpo di Frana (cfr)

$$\gamma$$
 = 19.5-21 kN/m³ (peso di volume)
 ϕ'_R = 10-15° * (angolo di attrito residuo)
 $\mathbf{c'}_R$ = 0-10 * kPa (coesione residua)

- Depositi detritici di falda s.l. (dt2)

Limi e argille, sabbiose, con inclusi clastici talora molto abbondanti (sono le coperture detritiche presenti in sommità della rupe)

$$\gamma$$
 = 17-18 kN/m³ (peso di volume)
 ϕ ' = 20-22.8° (angolo di attrito interno efficace)
 \mathbf{c} ' = 10-20 kPa (coesione efficace)
 $\mathbf{c}_{\mathbf{u}}$ = 80-100 kPa (coesione non drenata)

- Unità di Acquasparta (UA)

• Rupe - Facies alterata superficiale (in sommità ed in parete, generalmente max 5-6 m di spessore):

$$\gamma = 20.0\text{-}20.5$$
 kN/m³ (peso di volume)
 $\phi' = 26\text{-}28^\circ$ (angolo di attrito interno efficace)

^{*} valori da Rel. Geotecnica Prog.Def., mediante back-analysis

^{*} valori da Rel. Geotecnica Prog.Def.

dott. geol. Luca Domenico Venanti

 $\mathbf{c}' = 0 (10-20^*)$ kPa (coesione efficace)

• Rupe - Facies inalterata:

 $\gamma = 20.5-22.0 (20^*)$ KN/m³ (peso di volume)

 $\phi' = 28-36^{\circ}$ (angolo di attrito interno efficace)

 $\mathbf{c'} = 0 (100^*)$ kPa (coesione efficace)

- Unità di S.Maria di Ciciliano (USMC)

Limi argilloso-sabbiosi prevalenti

 $\gamma = 21$ KN/m³ (peso di volume)

 $\phi' = 22-26^{\circ}$ (angolo di attrito interno efficace)

c' = 10-30 kPa (coesione efficace)

 $c_u = 100-250$ kPa (coesione non drenata)

2 VERIFICHE GEOTECNICHE MURI CON FONDAZIONI PROFONDE

Dal momento che si tratta di muri con fondazioni profonde la verifica deve essere condotta seguendo le indicazioni riportate nella tabella successiva:

		STABILITA' GLOBALE MURO- TERRENO	1	C2: A2+M2+R2
FONDAZIONI PROFONDE E PARETE ANCORATA	GEO	CARICO LIMITE DELLA PALIFICATA PER CARICHI ASSIALI		
		CARICO LIMITE DELLA PALIFICATA PER CARICHI TRASVERSALI	1	APP. 1:
		CARICO LIMITE DI SFILAMENTO PER CARICHI ASSIALI DI TRAZIONE		C1[STR]: A1+M1+R1 C2[GEO]: A2+M ₂ +R2
	STR	RESISTENZA ELEMENTI STRUTTURALI (PALI E STRUTTURA DI COLLEGAMENTO)		
	GEO	SFILAMENTO ANCORAGGIO	2	C1:A1+M1+R3

^{*} valori intesi a livello macro-strutturale

^{*} valori intesi a livello macro-strutturale (da Rel. Geotecnica Prog.Def..)

^{*} valori intesi a livello macro-strutturale (da Rel. Geotecnica Prog.Def..)

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

In particolare la verifica di stabilità globale del complesso opera di sostegno-terreno è riportata nella relazione geotecnica.

All'interno di questa relazione vengono condotte le verifiche geotecniche:

- palificata secondo l'approccio 1, attraverso la combinazione 2 (A2+M1+R2),
- sfilamento degli ancoraggi secondo l'approccio 2 combinazione (A1+M1+R3).

I coefficienti parziali per le azioni e per gli effetti delle azioni sono riportati nella tabella 6.2.I delle NTC:

Tabella 6.2.1 - Coefficienti parziali per le azioni o per l'effetto delle azioni.

CARICHI	EFFETTO	Coefficiente Parziale % (o %)	EQU	(AI) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
	Sfavorevole	701	1.1	1,3	1.0
Permanenti non strutturali (1)	Favorevole	n n	0,0	0,0	0,0
Permanenti non strutturan	Sfavorevole	Yoz	1,5	1,5	1.3
Variabili	Favorevole	- 2	0,0	0,0	0,0
	Sfavorevole	You	1.5	1.5	1.3

Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

I coefficienti per i parametri geotecnici del terreno sono riportati nella tabella 6.2.II delle NTC 2008:

Tabella 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL COEFFICIENTE PARZIALE	COEFFICIENTE PARZIALE YM	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	tan φ′ _k	Υ _{φ'}	1,0	1,25
Coesione efficace	c' _k	γ _{e'}	1,0	1,25
Resistenza non drenata	Cuk	Yeu	1,0	1,4
Peso dell'unità di volume	γ	Yr	1,0	1,0

I coefficienti parziali γ_R per le verifiche agli stati limite GEO dei **pali** sono riportati nella tabella 6.4.II:

Tabella 6.4.II - Coefficienti parziali 1/2 da applicare alle resistenze caratteristiche.

Resistenza	Simbolo	Pali infissi		Pali trivellati			Pali ad elica continua			
	γR	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	γ ₆	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in compressione	γι	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
Totale (*)	Υı	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in trazione	Yet	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25

^(*) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Il valore di calcolo della resistenza si ottiene a partire dal valore caratteristico applicando i coefficienti riportati nella tabella qui sopra.

In base al paragrafo 6.4.3.1.1 delle NTC 2008, la resistenza caratteristica viene valutata con il metodo b):

- metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici, oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);
 - (b) Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza R_{c,k} (o R_{t,k}) è dato dal minore dei valori ottenuti applicando alle resistenze calcolate R_{c,cal} (R_{t,cal}) i fattori di correlazione ξ riportati nella Tab. 6.4.IV, in funzione del numero n di verticali di indagine:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,cal}\right)_{media}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$
(6.2.10)

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_{4}} \right\}$$
(6.2.11)

Tabella 6.4.IV – Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate.

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Nell'ambito dello stesso sistema di fondazione, il numero di verticali d'indagine da considerare per la scelta dei coefficienti ξ in Tab. 6.4.IV deve corrispondere al numero di verticali lungo le quali la singola indagine (sondaggio con prelievo di campioni indisturbati, prove penetrometriche, ecc.) sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo.

Avendo indagato nel corso di tutte le campagne di indagine della rupe di Massa Martana un numero di verticali superiore a 10 si applicano i coefficienti della colonna 7.

I coefficienti parziali γ_R per le verifiche agli stati limite GEO dei **tiranti** sono riportati nella tabella 6.6.I:

Tabella 6.6.I - Coefficienti parziali per la resistenza di ancoraggi

	SIMBOLO	COEFFICIENTE PARZIALE
	$\gamma_{ m R}$	
Temporanei	$\gamma_{\mathrm{Ra.t}}$	1,1
Permanenti	$\gamma_{\rm Ra,p}$	1,2

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio Rak si può determinare:

- a) dai risultati di prove di progetto su ancoraggi di prova;
- b) con metodi di calcolo analitici, dai valori caratteristici dei parametri geotecnici dedotti dai risultati di prove in sito e/o di laboratorio.

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

Il valore caratteristico della resistenza viene valutato con il metodo b):

Nel caso (b), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a3} e ξ_{a4} rispettivamente al valor medio e al valor minimo delle resistenze $R_{a,c}$ ottenute dal calcolo. Per la valutazione dei fattori ξ_{a3} e ξ_{a4} , si deve tenere conto che i profili di indagine sono solo quelli che consentono la completa identificazione del modello geotecnico di sottosuolo per il terreno di fondazione dell'ancoraggio.

$$R_{ak} = Min \left\{ \frac{(R_{a,c})_{medio}}{\xi_{a3}}; \frac{(R_{a,c})_{min}}{\xi_{a4}} \right\}.$$
 (6.2.13)

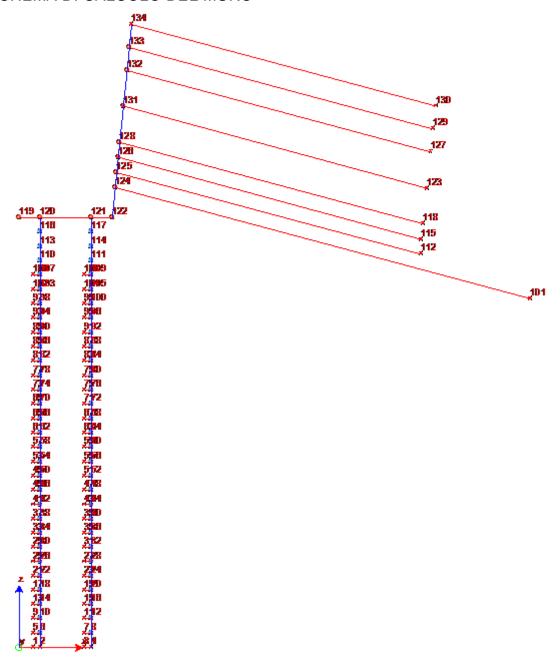
Nella valutazione analitica della resistenza allo sfilamento degli ancoraggi non si applicano coefficienti parziali di sicurezza sui valori caratteristici della resistenza del terreno; si fa quindi riferimento ai coefficienti parziali di sicurezza M1.

Tabella 6.6.III: Fattori di correlazione per derivare la resistenza caratteristica dalle prove geotecniche, in funzione del numero n di profili di indagine.

numero di profili di indagine	1	2	3	4	≥5
ξ _{a3}	1,80	1,75	1,70	1,65	1,60
ξ _{a4}	1,80	1,70	1,65	1,60	1,55

Avendo indagato nel corso di tutte le campagne di indagine della rupe di Massa Martana un numero di profili di indagine superiore a 5 si applicano i coefficienti della colonna 5.

Nei tiranti il cui tratto libero è realizzato con trefoli di acciaio armonico, nel rispetto della gerarchia delle resistenze, si deve verificare che la resistenza caratteristica al limite di snervamento del tratto libero sia sempre maggiore della resistenza a sfilamento della fondazione dell'ancoraggio.


MURO TIPOLOGIA E - TRATTO 1

3 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La modellazione della struttura, dei materiali e i carichi applicati sono quelli riportati nei paragrafi 4, 5 della relazione di calcolo.

4 MODELLO 1: FASE ATTIVA DEI TIRANTI

4.1 SCHEMA DI CALCOLO DEL MURO

4.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

dott. geol. Luca Domenico Venanti

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	1,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	1,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	1,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	1,	1,	0,6

4.3 RISULTATI DELL'ANALISI

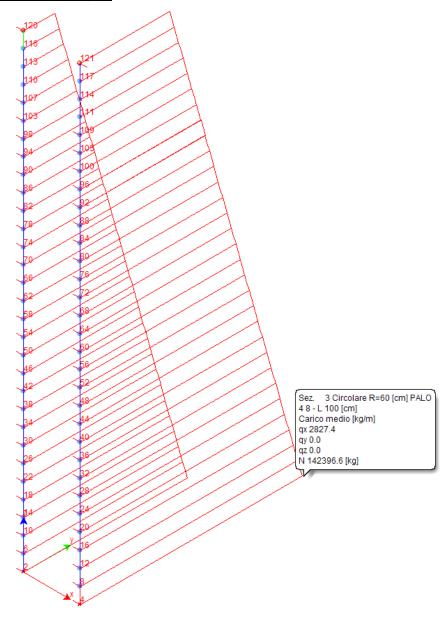
$MODELLO_1_STR \backslash TIRANTATO_MODELLO_1_GEO.dt$

Pilastro Sezione numero 3 Circolare PALO

Sforzo normale	Min asta 116 120	15363.6 [kg]	Comb. 2 Max asta 4 8	142396.6 [kg]	Comb. 5
Taglio piano 1-2	Min asta 96 92	-6.2 [kg]	Comb. 5 Max asta 116 120	0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 121 117	-3657.2 [kg]	Comb. 5 Max asta 28 32	393.4 [kg]	Comb. 5
Momento torcente	Min asta 46 42	-0.0 [kgm]	Comb. 5 Max asta 121 117	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 96 92	-14.3 [kgm]	Comb. 5 Max asta 74 70	9.8 [kgm]	Comb. 5
Momento Flet, piano 1-3	Min asta 121 117	-27863.4 [kgm]	Comb. 5 Max asta 116 120	25309.9 [kgm]	Comb. 5

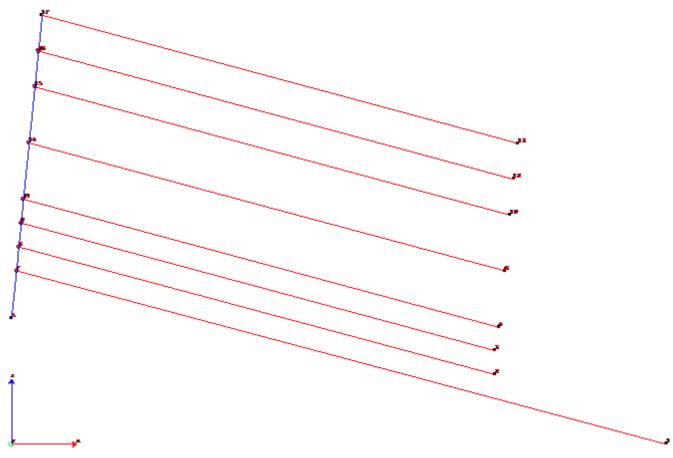
Trave Sezione numero 1 Quals. TIRANTE 90 T

Sforzo normale	Min asta 124 101	-2390.6 [kg]	Comb. 5 Max asta	124 101	-1171.7 [kg]	Comb. 1
Taglio piano 1-2	Min asta 124 101	-0.0 [kg]	Comb. 5 Max asta	124 101	-0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124 101	0.0 [kg]	Comb. 1 Max asta	124 101	0.0 [kg]	Comb. 1
Momento torcente	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 5
Momento Flet. piano 1-3	Min asta 124 101	-0.0 [kgm]	Comb. 1 Max asta	124 101	-0.0 [kgm]	Comb. 1


Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta 132 127	-5554.7 [kg]	Comb. 6 Max asta	125 112	-1567.3 [kg]	Comb. 2
Taglio piano 1-2	Min asta 131 123	-0.0 [kg]	Comb. 6 Max asta	126 115	0.0 [kg]	Comb. 5
Taglio piano 1-3	Min asta 126 115	0.0 [kg]	Comb. 1 Max asta	126 115	0.0 [kg]	Comb. 1
Momento torcente	Min asta 126 115	0.0 [kgm]	Comb. 1 Max asta	126 115	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 126 115	-0.0 [kgm]	Comb. 5 Max asta	131 123	0.0 [kgm]	Comb. 6
Momento Flet. piano 1-3	Min asta 126 115	-0.0 [kgm]	Comb. 1 Max asta	126 115	-0.0 [kgm]	Comb. 1

dott. geol. Luca Domenico Venanti


4.4 RAPPRESENTAZIONE GRAFICA

Sforzo normale massimo sui pali

5 MODELLO 2: FASE PASSIVA DEL TIRANTE

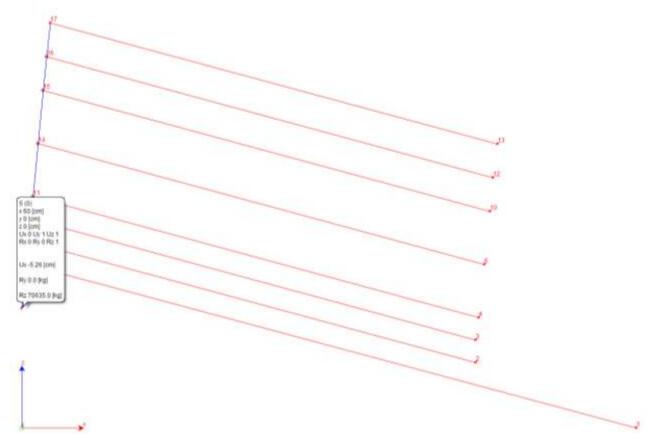
5.1 SCHEMA DI CALCOLO DEL MURO

COMBINAZIONI DI CARICO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	0,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	0,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	0,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	0,	1,	0,6

5.3 RISULTATI DELL'ANALISI

Trave Sezione numero 1 Quals. TIRANTE 90 T


Sforzo normale	Min asta 7 1 -23839.0 [kg]	Comb. 5 Ma	ix asta 7 1	-21329.3 [kg]	Comb. 1
Taglio piano 1-2	Min asta 7 1 -0.0 [kg]	Comb. 5 Ma	x asta 7 1	-0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 7 1 0.0 [kg]	Comb. 1 Ma	x asta 7 1	0.0 [kg]	Comb. 1
Momento torcente	Min asta 7 1 0.0 [kgm]	Comb. 1 Ma	x asta 7 1	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 7 1 0.0 [kgm]	Comb. 1 Ma	ax asta 7 1	0.0 [kgm]	Comb. 5
Momento Flet. piano 1-3	Min asta 7 1 -0.0 [kgm]	Comb. 1 Ma	x asta 7 1	-0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta 8 2	-22417.6 [kg]	Comb. 5	Max asta 17	13	2350.6 [kg]	Comb. 2
Taglio piano 1-2	Min asta 8 2	-0.0 [kg]	Comb. 4	Max asta 11	4	0.0 [kg]	Comb. 5
Taglio piano 1-3	Min asta 8 2	0.0 [kg]	Comb. 1	Max asta 8 2	2	0.0 [kg]	Comb. 1
Momento torcente	Min asta 8 2	0.0 [kgm]	Comb. 1	Max asta 8 2	2	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 11 4	-0.0 [kgm]	Comb. 5	Max asta 8 2	2	0.0 [kgm]	Comb. 4
Momento Flet. piano 1-3	Min asta 8 2	-0.0 [kgm]	Comb. 1	Max asta 8 2	2	-0.0 [kgm]	Comb. 1

5.4 RAPPRESENTAZIONE GRAFICA

Reazione vincolare di appoggio alla base

6 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 2.50 m si ha:

PALO	N [daN]
Combo 5 Mod. 1	356000 [compres]

TIRANTE DYWIDAG

Considerando che le barre dywidag sono poste ad un interasse in direzione longitudinale di 2.50 m si ha:

DYWIDAG	N [daN]
Combo 5 Mod. 2	-56050 [traz]

TIRANTE A TREFOLI DA 90 t

Considerando che il tirante è posto ad un interasse in direzione longitudinale di 2.50 m si ha:

TIRANTE	N [daN]
Combo 5 Mod. 2	-59600 [traz]

7 CAPACITA' PORTANTE DEI PALI

I pali presentano un diametro di 120 cm e una lunghezza di 30,00 m, sono inseriti per i primi 5 m (in sommità) all'interno del corpo di frana per i restanti 25 m all'interno dell'Unità di S. Maria di Ciciliano (U.S.M.C.).

Il contributo dei primi cinque metri sulla capacità portante del palo viene completamente trascurato.

La capacità portante del palo in condizioni di progetto è pari a:

PORTANZA di PROGETTO
$$Rc,d = 411144 daN$$

 $Rt,d = -360154 daN$

Confrontando la portanza di progetto con i valori delle sollecitazioni agenti sul palo maggiormente sollecitato nelle diverse combinazioni di carico si osserva che la verifica risulta soddisfatta.

Coefficienti usati per la valutazione della portanza di progetto:

K:\COMMESSE\2014\2014_04_REGIONE_UMBRIA_RUPE_VI\2_PROGETTAZIONE\RELAZIONI\C_REL_01_2014_04_E0_A_V_08.doc

VERIFICHE GEOTECNICHE- Parametri medi

1 - CORPO DI FRAN	A	2 - U.S.M.C	
		Spess. [Δ H	
Spess. [Δ H m]	5.00	m]	25.00
φ [°]=	4	φ [°]=	24
γ [daN/mc]=	2000	γ [daN/mc]=	2100
		С	
c [daN/cmq]=	0	[daN/cmq]=	0.2
k =	0.50	k =	0.40
μ =	0.07	μ =	0.45
z [m] =	2.50	z [m] =	17.50

Carico limite verticale per ATTRITO LATERALE con formule statiche

TRASCURANDO IL PRIMO METRO DI PALO

 $Q_{\text{lim}} = \qquad \qquad \sum (\Delta L \mathbf{x} \Delta H \mathbf{x} \tau)$

 Δ L π xd_{foro} Circonferenza micropalo

 τ = $kx\sigma_vx\mu$ resisteza di attrito tangenziale

k = Coefficiente empirico dipendente dalle modalità di esecuzione del palo

 μ = tan φ Coefficiente di attrito

NELLA VALUTAZIONE DEL CARICO LIMITE SI TRASCURA IL PRIMO METRO DI MICROPALO

STRATO 1 0.00 daN

STRATO 2 616839 daN

STRATO 3 <u>0</u> daN **TOT.** 616839 daN R_{d,lat} trazione= -275374 daN
R_{d,lat} compres= 303861 daN

Carico limite verticale DI PUNTA

Q _{lim} =	$\Sigma (N_c xc + N_q x \sigma_v) xA$		
φ ' ₁ [°]=	1	φ'₂[°]=	21
Nc1 =	1.7	Nc2 =	14.06
Na1 =	1.12	Na2 =	7.26

 STRATO 1
 0.00 daN

 STRATO 2
 462639 daN

 STRATO 3
 0 daN

TOT. 462639 daN

R_{d,punta}= 194386 daN

VERIFICHE GEOTECNICHE- Parametri minimi

1 - CORPO DI FRANA 2 - U.S.M.C

Spess. [\triangle H m] 5.00 Spess. [\triangle H m] 25.00

φ [°]=	4	φ [°]=	22
γ [daN/mc]=	1950	γ [daN/mc]=	2100
c [daN/cmq]=	0	c [daN/cmq]=	0.1
k =	0.50	k =	0.40
μ =	0.07	μ =	0.40
z [m] =	2.50	z [m] =	17.50

Carico limite verticale per ATTRITO LATERALE con formule statiche

TRASCURANDO IL PRIMO METRO DI PALO

 $Q_{lim} = \sum (\Delta Lx \Delta Hx \tau)$

 Δ L π xd_{foro} Circonferenza micropalo

 τ = $kx\sigma_vx\mu$ resisteza di attrito tangenziale

k = Coefficiente empirico dipendente dalle modalità di esecuzione del palo

 μ = tan φ Coefficiente di attrito

NELLA VALUTAZIONE DEL CARICO LIMITE SI TRASCURA IL PRIMO METRO DI MICROPALO

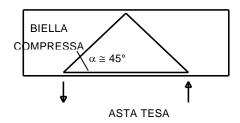
 STRATO 1
 0.00 daN

 STRATO 2
 559755 daN

 STRATO 3
 0 daN

 $\begin{array}{ccc} R_{d,lat} \; trazione = & -289130 \;\; daN \\ \\ R_{d,lat} \; compres = & 319040 \;\; daN \end{array}$

TOT. 559755 daN


Carico limite verticale DI PUNTA

Q _{lim} =	$\Sigma (N_{\mathsf{c}xc} ext{+}N_{\mathsf{q}x}\sigma_{v})$)xA	
φ ' $_1$ [°]=	1	$arphi$ ' $_{ extstyle 2}$ [°]=	19
Nc1 =	1.72	Nc2 =	12.13
Nq1 =	1.12	Nq2 =	5.9

STRATO 1	0.00	daN			
STRATO 2	363851	daN			
STRATO 3	0	daN	R _{d,punta} =	176884	daN
тот.	363851	daN			

ARMATURA AGGIUNTIVA IN TESTA AI PALI

La platea, realizzata in calcestruzzo armato, presenta uno spessore di 150 cm ed una larghezza di 680 cm. Il modello di calcolo usato per la verifica è a traliccio di Morsch:

Il valore dello sforzo normale massimo agente sul palo è di 356000 daN.

ARMATURA IN TESTA A PALI							
Il calcolo viene condotto considerando un comportamento a traliccio di Morsch							
f_{yk} [daN/cm ²] =	4500,00						
$\gamma_s =$	1,15						
f _{yd} [daN/cm ₂] =	3913,04						
$A_{res} [cm^2] = 90,98$ $8 \oplus 22 + 18 \oplus 26 [93]$,59]				

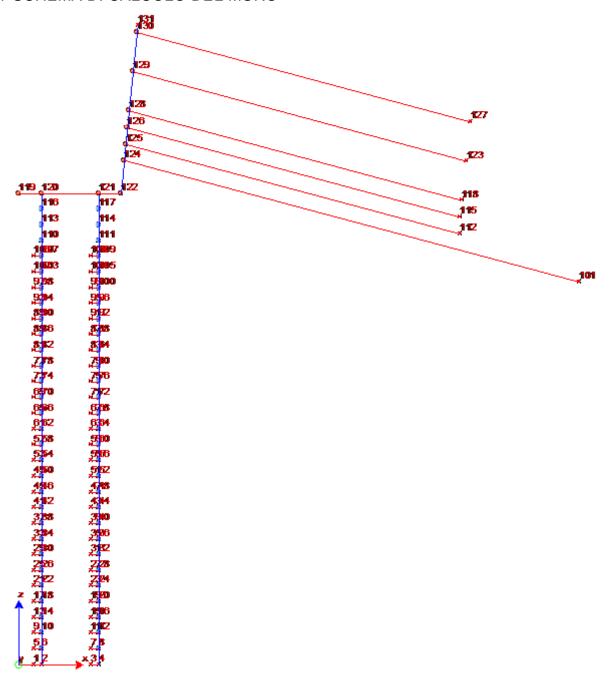
La platea è armata con $7\Phi22$ al metro lineare, in testa ai pali si ha una armatura di $8\Phi22$ che viene integrata con una armatura aggiuntiva di $18\Phi26$.

8 VERIFICA ANCORAGGIO TIRANTE A TREFOLI

VERIFICA ANCORAGGIO	TIRANTE A TREFOLI			
Metodo di Bustamante-Doix				
Massima azione di progetto al metro lineare di parete	P _{dAL M} [daN]	23840		
Interasse tiranti	i [m]	2,5		
Azione di progetto sul tirante	P _d [daN]	59600	TIRANTE A	6 TREFOLI
Coeff parziale resistenza ancoraggi	У Rа,р	1,2	Tab 6.6.I	
Peso Terreno	γ_t [kg/m ³]	2050		
Diametro nominale foro	d _h [m]	0,22		
Resistenza media	$(R_{a,c})_{medio}$ [daN/m ²]	15000	Da rel. geoteci	nica
Resistenza minima	(R _{a,c}) _{min}	13000	Da rel. geoteci	nica
numero di profili di indagine	ξ _{a3}	1,6	Tab 6.6.III	
numero di profili di indagine	ξ _{a4}	1,55	Tab 6.6.III	
Resistenza caratteristica	R _{ak} [daN/m ²]	8387		
Resistenza di progetto	$R_{ad} = R_{ak}/\gamma_R$ [daN/m2]	6989		
Lunghezza Fondazione	L [m]	18		
alfa (IRS)		1,15	fat. increment.	dip. dall'insta
Capacità limite dell'insieme terreno-tirante	T [daN]	99994	OK	

9 VERIFICA ANCORAGGIO BARRE DYWIDAG

VERIFICA ANCORAGGIO TIRANTE DYWIDAG						
Metodo di Bustamante-Doix						
Massima azione di progetto	P _d [daN]	22420				
Interasse tiranti	i [m]	2,5				
Azione di progetto sul tirante	P _d [daN]	56050				
Coeff parziale resistenza ancoraggi	γ̃Ra,p	1,2				
Peso Terreno	γ_t [kg/m ³]	2050				
Diametro nominale foro	d _h [m]	0,11				
Resistenza media	$(R_{a,c})_{medio}$ [daN/m ²]	15000				
Resistenza minima	(R _{a,c}) _{min}	13000				
numero di profili di indagine	ξ _{a3}	1,6				
numero di profili di indagine	ξ _{a4}	1,55				
Resistenza caratteristica	R _{ak} [daN/m ²]	8387				
Resistenza di progetto	$R_{ad} = R_{ak}/\gamma_R$ [daN/m2]	6989				
Lunghezza Fondazione	L [m]	22				
alfa (IRS)		1,15				
Capacità limite dell'insieme terreno-tirante	T [daN]	61107	OK			


MURO TIPOLOGIA E - TRATTO 2

10 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La modellazione della struttura, dei materiali e i carichi applicati sono quelli riportati nei paragrafi 11 e 12 della relazione di calcolo.

11 MODELLO 1: FASE ATTIVA DEI TIRANTI

11.1 SCHEMA DI CALCOLO DEL MURO

11.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

dott. geol. Luca Domenico Venanti

	Commento	P PR	SP TER	P POR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	1,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	1,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	1,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	1,	1,	0,6

11.3 RISULTATI DELL'ANALISI

 $TIPOLOGIA_E \backslash TRATTO_2 \backslash MODELLO_1_GEO \backslash TIRANTATO_MODELLO_1_GEO. dt$

Pilastro Sezione numero 3 Circolare PALO

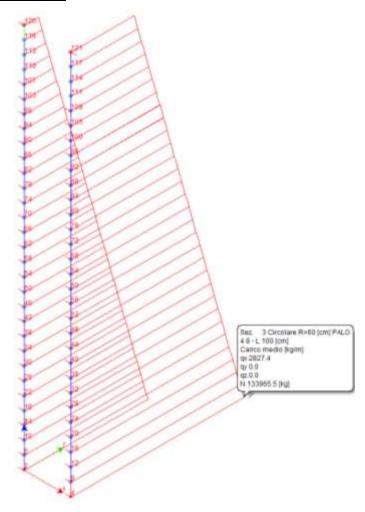
Sforzo normale	Min asta 116 120	6392.2 [kg]	Comb. 2 Max asta 4 8	133965.5 [kg]	Comb. 5
Taglio piano 1-2	Min asta 74 70	-0.2 [kg]	Comb. 5 Max asta 96 92	2.9 [kg]	Comb. 1
Taglio piano 1-3	Min asta 34 38	-296.8 [kg]	Comb. 1 Max asta 121 117	1976.9 [kg]	Comb. 1
Momento torcente	Min asta 46 42	-0.0 [kgm]	Comb. 5 Max asta 121 117	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 74 70	-9.8 [kgm]	Comb. 2 Max asta 96 92	0.2 [kgm]	Comb. 1
Momento Flet. piano 1-3	Min asta 116 120	-11304.6 [kgm]	Comb. 1 Max asta 121 117	12303.4 [kgm]	Comb. 1

Trave Sezione numero 1 Quals. TIRANTE 90 T

Sforzo normale	Min asta 124 101	663.3 [kg]	Comb. 5 Max asta	124 101	1718.0 [kg]	Comb. 1
Taglio piano 1-2	Min asta 124 101	-0.0 [kg]	Comb. 6 Max asta	124 101	0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124 101	0.0 [kg]	Comb. 1 Max asta	124 101	0.0 [kg]	Comb. 1
Momento torcente	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 124 101	-0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 6
Momento Flet. piano 1-3	3 Min asta 124 101	-0.0 [kgm]	Comb. 1 Max asta	124 101	-0.0 [kgm]	Comb. 1

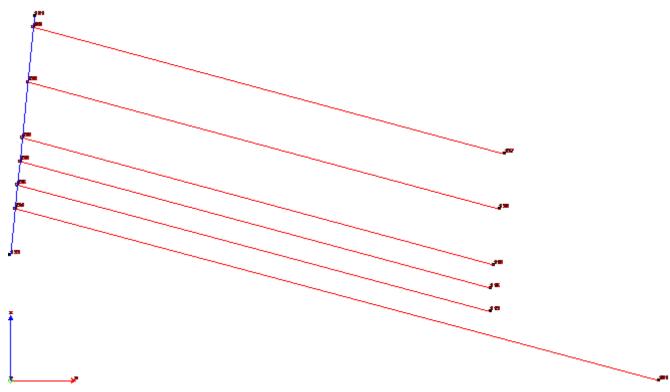
Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta 130 127 -382	4.4 [kg] Comb. 6	5 Max asta 125 112	1518.0 [kg]	Comb. 2
Taglio piano 1-2	Min asta 129 123 -0.0	[kg] Comb. 6	5 Max asta 130 127	0.0 [kg]	Comb. 6
Taglio piano 1-3	Min asta 130 127 0.0 [[kg] Comb. 1	1 Max asta 130 127	0.0 [kg]	Comb. 1
Momento torcente	Min asta 130 127 0.0 [[kgm] Comb. 1	1 Max asta 130 127	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 130 127 -0.0	[kgm] Comb. 6	5 Max asta 129 123	0.0 [kgm]	Comb. 6
Momento Flet. piano 1-3	Min asta 130 127 -0.0	[kgm] Comb. 1	1 Max asta 130 127	-0.0 [kgm]	Comb. 1


prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti


11.4 RAPPRESENTAZIONE GRAFICA

Sforzo normale massimo sui pali

12 MODELLO 2: FASE PASSIVA DEL TIRANTE

12.1 SCHEMA DI CALCOLO DEL MURO

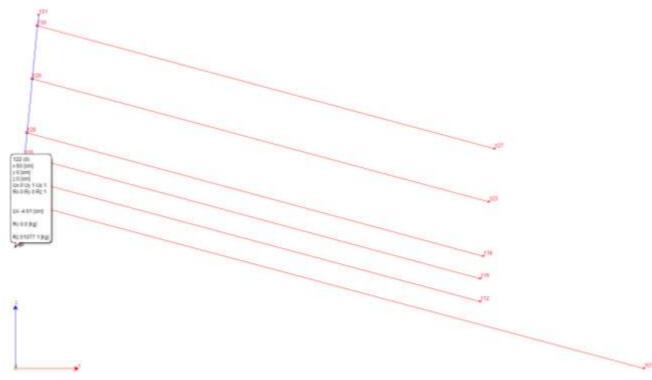
12.2 COMBINAZIONI DI CARICO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	0,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	0,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	0,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	0,	1,	0,6

12.3 RISULTATI DELL'ANALISI

TIPOLOGIA_E\TRATTO_2\MODELLO_1_GEO\TIRANTATO_MODELLO_2_GEO.dt

Trave Sezione numero 1 Quals. TIRANTE 90 T


Sforzo normale	Min asta 124 101	-19575.2 [kg]	Comb. 5 Max asta	124 101	-17330.7 [kg]	Comb. 1
Taglio piano 1-2	Min asta 124 101	-0.0 [kg]	Comb. 5 Max asta	124 101	-0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124 101	0.0 [kg]	Comb. 1 Max asta	124 101	0.0 [kg]	Comb. 1
Momento torcente	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 5
Momento Flet. piano 1-3	Min asta 124 101	-0.0 [kgm]	Comb. 1 Max asta	124 101	-0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta 125 112	-17506.3 [kg]	Comb.	5 Max as	ta 130	127	3510.1 [kg]	Comb. 2
Taglio piano 1-2	Min asta 129 123	-0.0 [kg]	Comb.	6 Max as	ta 128	118	0.0 [kg]	Comb. 5
Taglio piano 1-3	Min asta 130 127	0.0 [kg]	Comb.	1 Max as	ta 130	127	0.0 [kg]	Comb. 1
Momento torcente	Min asta 130 127	0.0 [kgm]	Comb.	1 Max as	ta 130	127	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 128 118	-0.0 [kgm]	Comb.	5 Max as	ta 129	123	0.0 [kgm]	Comb. 6
Momento Flet. piano 1-3	Min asta 130 127	-0.0 [kgm]	Comb.	1 Max as	ta 130	127	-0.0 [kgm]	Comb. 1

12.4 RAPPRESENTAZIONE GRAFICA

Reazione vincolare di appoggio alla base

13 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 2.50 m si ha:

PALO	N [daN]
Combo 5 Mod. 1	335000 [compres]

TIRANTE DYWIDAG

Considerando che le barre dywidag sono poste ad un interasse in direzione longitudinale di 2.50 m si ha:

DYWIDAG	N [daN]
Combo 5 Mod. 2	-43775 [traz]

TIRANTE A TREFOLI DA 90 t

Considerando che il tirante è posto ad un interasse in direzione longitudinale di 2.50 m si ha:

TIRANTE	N [daN]
Combo 5 Mod. 2	-48940 [traz]

14 CAPACITA' PORTANTE DEI PALI

I pali presentano un diametro di 120 cm e una lunghezza di 30,00 m, sono inseriti per i primi 5 m (in sommità) all'interno del corpo di frana per i restanti 25 m all'interno dell'Unità di S. Maria di Ciciliano (U.S.M.C.).

Il contributo dei primi cinque metri sulla capacità portante del palo viene completamente trascurato.

La capacità portante del palo in condizioni di progetto è pari a:

PORTANZA di PROGETTO
$$Rc,d = 411144 daN$$

 $Rt,d = -360154 daN$

Confrontando la portanza di progetto con i valori delle sollecitazioni agenti sul palo maggiormente sollecitato nelle diverse combinazioni di carico si osserva che la verifica risulta soddisfatta.

Coefficienti usati per la valutazione della portanza di progetto:

Geometria pali			CAPACITA' P	ORTANTE CARAT	TERISTICA PALI
L [m] =	30.00	Lunghezza	$\gamma_{ extsf{R2 [traz.]}}$	γ _{R2 [compr.]}	γ _{R2 [punta]}
d_{foro} [mm] =	1200.00	Diametro perforazione	>10 VERTIO	CALI INDAGATE	
P _{palo} =	84780	daN	$\xi_3 = \xi_4 =$	1,40 1,21	Parametri medi Parametri minir

VERIFICHE GEOTECNICHE- Parametri medi

1 - CORPO DI FRAN	IA	2 - U.S.M.C	
		Spess. [Δ H	
Spess. [Δ H m]	5.00	m]	25.00
φ [°]=	4	φ [°]=	24
γ [daN/mc]=	2000	γ [daN/mc]=	2100
		С	
c [daN/cmq]=	0	[daN/cmq]=	0.2
k =	0.50	k =	0.40
μ =	0.07	μ =	0.45
z [m] =	2.50	z [m] =	17.50

Carico limite verticale per ATTRITO LATERALE con formule statiche

TRASCURANDO IL PRIMO METRO DI PALO

 $Q_{lim} = \sum (\Delta Lx \Delta Hx \tau)$

 Δ L π xd_{foro} Circonferenza micropalo

 τ = $kx\sigma_v x \mu$ resisteza di attrito tangenziale

k = Coefficiente empirico dipendente dalle modalità di esecuzione del palo

 μ = tan φ Coefficiente di attrito

NELLA VALUTAZIONE DEL CARICO LIMITE SI TRASCURA IL PRIMO METRO DI MICROPALO

STRATO 1 0.00 daN

STRATO 2 616839 daN

STRATO 3 <u>0</u> daN

TOT. 616839 daN

R _{d,lat}		
trazione=	-275374	daN
R _{d,lat}		
compres=	303861	daN

Carico limite verticale DI PUNTA

 $Q_{lim} = \sum (N_c x c + N_q x \sigma_v) x A$

 φ'_1 [°]= 1 φ'_2 [°]= 21 Nc1 = 1.7 Nc2 = 14.06

Nq1 = 1.12 Nq2 = 7.26

STRATO 1 **0.00** daN STRATO 2 462639 daN

STRATO 3 _____ 0 daN $R_{d,punta}$ =

TOT. 462639 daN

R _{d,punta} =	194386	daN
'\d.punta -	134300	uait

VERIFICHE GEOTECNICHE- Parametri minimi

1 - CORPO DI FRANA 2 - U.S.M.C

Spess. [\triangle H m] 5.00 m] 25.00 φ [°]= 4 φ [°]= 22

 γ [daN/mc]= 1950 γ [daN/mc]= 2100

C

c [daN/cmq]= 0 [daN/cmq]= 0.1 k = 0.50 k = 0.40 μ = 0.07 μ = 0.40

z [m] = 2.50 z [m] = 17.50

Carico limite verticale per ATTRITO LATERALE con formule statiche

TRASCURANDO IL PRIMO METRO DI PALO

 $Q_{lim} = \sum (\Delta Lx \Delta Hx \tau)$

 Δ L π xd_{foro} Circonferenza micropalo

au = $\mathbf{k} \mathbf{x} \sigma_{\mathbf{v}} \mathbf{x} \mu$ resisteza di attrito tangenziale

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

k = Coefficiente empirico dipendente dalle modalità di esecuzione del palo

 μ = tan φ Coefficiente di attrito

NELLA VALUTAZIONE DEL CARICO LIMITE SI TRASCURA IL PRIMO METRO DI MICROPALO

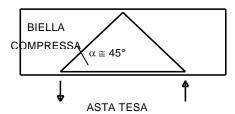
STRATO 1 0.00 daN

STRATO 2 559755 daN

STRATO 3 <u>0</u> daN

TOT. 559755 daN

R _{d,lat} trazione=	-289130	daN
R _{d,lat} compres=	319040	daN


Carico limite verticale DI PUNTA

$Q_{lim} =$	$\Sigma (N_c xc + N_q x \sigma_v) xA$		
φ ' ₁ [°]=	1	φ' ₂ [°]=	19
Nc1 =	1.72	Nc2 =	12.13
Nq1 =	1.12	Nq2 =	5.9

R_{d,punta}= 176884 daN

ARMATURA AGGIUNTIVA IN TESTA AI PALI

La platea, realizzata in calcestruzzo armato, presenta uno spessore di 150 cm ed una larghezza di 680 cm. Il modello di calcolo usato per la verifica è a traliccio di Morsch:

Il valore dello sforzo normale massimo agente sul palo è di 335000 daN.

ARMATURA IN T	ESTA A PA	\LI						
Il calcolo viene	Il calcolo viene condotto considerando un comportamento a traliccio di Morsch							
$f_{yk} [daN/cm^2] =$	4500,00							
γ_s =	1,15							
f _{yd} [daN/cm ₂] =	3913,04							
$A_{res} [cm^2] =$	85,61		8422+11426 [88 , 82]					

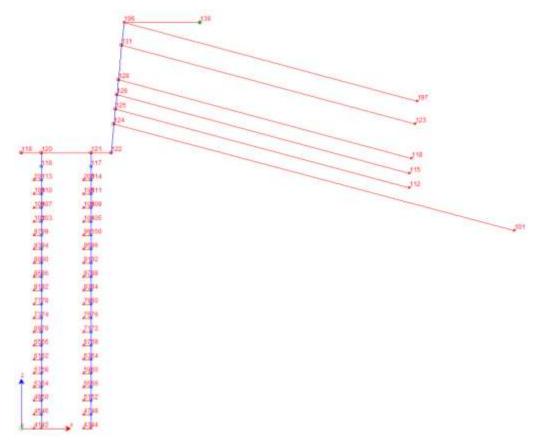
La platea è armata con $7\Phi22$ al metro lineare, in testa ai pali si ha una armatura di $8\Phi22$ che viene integrata con una armatura aggiuntiva di $11\Phi26$.

15 VERIFICA ANCORAGGIO TIRANTE A TREFOLI

Metodo di Bustamante-Doix			
Massima azione di progetto al metro lineare di parete	P _{dAL M} [daN]	19576	
Interasse tiranti	i [m]	2,5	
Azione di progetto sul tirante	P _d [daN]	48940	TIRANTE A 6 TREFOLI
Coeff parziale resistenza ancoraggi	γ̃Ra,p	1,2	Tab 6.6.I
Peso Terreno	$\gamma_t [kg/m^3]$	2050	
Diametro nominale foro	d _h [m]	0,22	
Resistenza media	$(R_{a,c})_{medio}$ [daN/m ²]	15000	Da rel. geotecnica
Resistenza minima	(R _{a,c}) _{min}	13000	Da rel. geotecnica
numero di profili di indagine	ξ _{a3}	1,6	Tab 6.6.III
numero di profili di indagine	ξ _{a4}	1,55	Tab 6.6.III
Resistenza caratteristica	R _{ak} [daN/m ²]	8387	
Resistenza di progetto	$R_{ad} = R_{ak}/\gamma_R$ [daN/m2]	6989	
Lunghezza Fondazione	L [m]	18	
alfa (IRS)		1,15	fat. increment. dip. dall'insta
Capacità limite dell'insieme terreno-tirante	T [daN]	99994	OK

16 VERIFICA ANCORAGGIO BARRE DYWIDAG

Metodo di Bustamante-Doix			
Massima azione di progetto	P _d [daN]	17510	
Interasse tiranti	i [m]	2,5	
Azione di progetto sul tirante	P _d [daN]	43775	
Coeff parziale resistenza ancoraggi	ŶRa,p	1,2	
Peso Terreno	γ_t [kg/m ³]	2050	
Diametro nominale foro	d _h [m]	0,11	
Resistenza media	$(R_{a,c})_{medio}$ [daN/m ²]	15000	
Resistenza minima	(R _{a,c}) _{min}	13000	
numero di profili di indagine	ξ _{a3}	1,6	
numero di profili di indagine	ξ _{a4}	1,55	
Resistenza caratteristica	R_{ak} [daN/m ²]	8387	
Resistenza di progetto	$R_{ad} = R_{ak}/\gamma_R$ [daN/m2]	6989	
Lunghezza Fondazione	L [m]	22	
alfa (IRS)		1,15	
Capacità limite dell'insieme terreno-tirante	T [daN]	61107	OK


MURO TIPOLOGIA E - TRATTO 3

17 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La modellazione della struttura, dei materiali e i carichi applicati sono quelli riportati nei paragrafi 17 e 18 della relazione di calcolo.

18 MODELLO 1: FASE ATTIVA DEI TIRANTI

18.1 SCHEMA DI CALCOLO DEL MURO

18.2 COMBINAZIONI DI CARICO

I carichi elementari precedentemente descritti sono stati combinati in vario modo al fine di ottenere le situazioni più svantaggiose per la struttura.

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER +	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	1,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	1,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	1,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	1,	1,	0,6

18.3 RISULTATI DELL'ANALISI

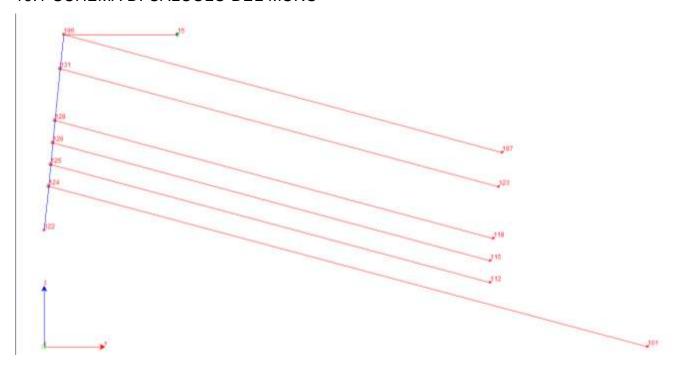
 $MODELLI_DI_CALCOLO \setminus TIPOLOGIA_E \setminus TRATTO_3 \setminus MODELLO_GEO \setminus TIRANTATO_MODELLO_1_GEO_V02. dt$

Pilastro Sezione numero 3 Circolare PALO

Sforzo normale	Min asta 116 120 -5628.9 [kg]	Comb. 3 Max asta 121 117 74802.5 [kg]	Comb. 3
Taglio piano 1-2	Min asta 74 70 -0.3 [kg]	Comb. 5 Max asta 96 92 2.3 [kg]	Comb. 1
Taglio piano 1-3	Min asta 68 64 -290.9 [kg]	Comb. 3 Max asta 116 120 2926.1 [kg]	Comb. 1

Momento torcente Min asta 117 114 0.0 [kgm] Comb. 1 Max asta 121 117 0.0 [kgm] Comb. 1 Momento Flet. piano 1-2 Min asta 96 92 -7.0 [kgm] Comb. 5 Max asta 96 92 1.3 [kgm] Comb. 1 Momento Flet. piano 1-3 Min asta 116 120 -16440.3 [kgm] Comb. 1 Max asta 121 117 13966.7 [kgm] Comb. 1

Trave Sezione numero 1 Quals, TIRANTE 90 T


Sforzo normale	Min asta 124 10	1 1302.9 [kg]	Comb. 6 Max asta	124 101	2407.1 [kg]	Comb. 2
Taglio piano 1-2	Min asta 124 10	1 0.0 [kg]	Comb. 6 Max asta	124 101	0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124 10	1 0.0 [kg]	Comb. 1 Max asta	124 101	0.0 [kg]	Comb. 1
Momento torcente	Min asta 124 10	1 0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 124 10	1 -0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-3	3 Min asta 124 10	1 -0.0 [kgm]	Comb. 1 Max asta	124 101	-0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta	131 12	3 645.9 [kg	Comb. 6 Max as	sta 125	112 2451.9 [kg	g] Comb. 2
Taglio piano 1-2	Min asta	126 11	5 0.0 [kg]	Comb. 1 Max as	sta 128	118 0.0 [kg]	Comb. 6
Taglio piano 1-3	Min asta	126 11	5 0.0 [kg]	Comb. 1 Max as	sta 126	5115 0.0 [kg]	Comb. 1
Momento torcente	Min asta	126 11	5 0.0 [kgm]	Comb. 1 Max as	sta 126	115 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta	128 11	8 -0.0 [kgm] Comb. 6 Max as	sta 126	115 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-3	Min asta	126 11	5 -0.0 [kgm] Comb. 1 Max as	ta 126	115 -0.0 [kgm]	Comb. 1

19 MODELLO 2: FASE PASSIVA DEL TIRANTE

19.1 SCHEMA DI CALCOLO DEL MURO

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

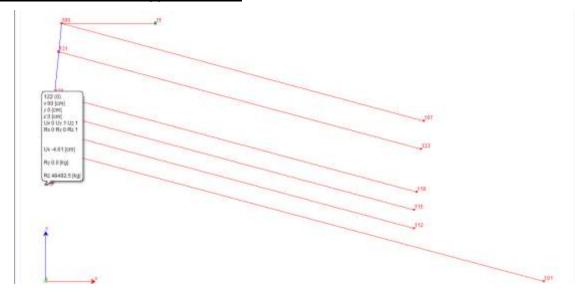
19.2 COMBINAZIONI DI CARICO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER +	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	0,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	0,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	0,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	0,	1,	0,6

19.3 RISULTATI DELL'ANALISI

 $MODELLI_DI_CALCOLO \setminus TIPOLOGIA_E \setminus TRATTO_3 \setminus MODELLO_GEO \setminus TIRANTATO_MODELLO_2_GEO_V02. dt$

Trave Sezione numero 1 Quals. TIRANTE 90 T


Sforzo normale	Min asta 124 101	-21126.8 [kg]	Comb. 5 Max asta	124 101	-17888.2 [kg]	Comb. 1
Taglio piano 1-2	Min asta 124 101	-0.0 [kg]	Comb. 5 Max asta	124 101	-0.0 [kg]	Comb. 1
Taglio piano 1-3	Min asta 124 101	0.0 [kg]	Comb. 1 Max asta	124 101	0.0 [kg]	Comb. 1
Momento torcente	Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	2 Min asta 124 101	0.0 [kgm]	Comb. 1 Max asta	124 101	0.0 [kgm]	Comb. 5
Momento Flet. piano 1-3	3 Min asta 124 101	-0.0 [kgm]	Comb. 1 Max asta	124 101	-0.0 [kgm]	Comb. 1

Trave Sezione numero 2 Quals. TIRANTE DYWIDAG

Sforzo normale	Min asta 125 112 -17944.0 [kg	[3] Comb. 5 Max asta 196 197 10243.9	kg] Comb. 3
Taglio piano 1-2	Min asta 196 197 -0.0 [kg]	Comb. 2 Max asta 126 115 0.0 [kg]	Comb. 5
Taglio piano 1-3	Min asta 126 115 0.0 [kg]	Comb. 1 Max asta 126 115 0.0 [kg]	Comb. 1
Momento torcente	Min asta 126 115 0.0 [kgm]	Comb. 1 Max asta 126 115 0.0 [kgm]	Comb. 1
Momento Flet. piano 1-2	Min asta 126 115 -0.0 [kgm]	Comb. 5 Max asta 196 197 0.0 [kgm]	Comb. 2
Momento Flet. piano 1-3	Min asta 126 115 -0.0 [kgm]	Comb. 1 Max asta 126 115 -0.0 [kgm	Comb. 1

19.4 RAPPRESENTAZIONE GRAFICA

Reazione vincolare di appoggio alla base

20 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 2.50 m si ha:

PALO	N [daN]
Combo 3 Mod.1	187008 [compres]

TIRANTE DYWIDAG

Considerando che le barre dywidag sono poste ad un interasse in direzione longitudinale di 2.50 m si ha:

DYWIDAG	N [daN]
Combo 5 Mod. 2	-44875 [traz]

TIRANTE A TREFOLI DA 90 t

Considerando che il tirante è posto ad un interasse in direzione longitudinale di 2.50 m si ha:

TIRANTE	N [daN]
Combo 5 Mod. 2	-52818 [traz]

21 CAPACITA' PORTANTE DEI PALI

I pali presentano un diametro di 120 cm e una lunghezza di 20,00 m, sono inseriti per l'intera lunghezza all'interno dell'Unità di S. Maria di Ciciliano (U.S.M.C.).

PORTANZA DI PROGETTO	Rc,k =	224875 daN
	Rt,k =	-182085 daN

Confrontando la portanza di progetto con i valori delle sollecitazioni agenti sul palo maggiormente sollecitato nelle diverse combinazioni di carico si osserva che la verifica risulta soddisfatta.

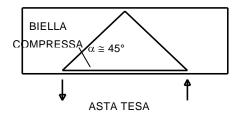
Coefficienti usati per la valutazione della portanza di progetto:

CAPACITA' P	ORTANTE CARAT	TERISTICA PALI
$\gamma_{\text{R2 [traz.]}}$	$\gamma_{\sf R2[compr.]}$	$\gamma_{ extsf{R2 [punta]}}$
1,60	1,45	1,70
>10 VERTIC	CALI INDAGATE	
$\xi_3 =$	1,40	Parametri medi
<u> </u>	1.21	Parametri minir

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

L [m] =	20,00	Lunghezza				
d _{foro} [mm] =	1200,00	Diametro pe	erforazione			
P _{palo} =	56520	daN				
VERIFICHE	GEOTECN	CHE- Pa	rametri m	edi		
1 - U.S.M.C.			2 -			
Spess. [△H m]	20,00		Spess. [Δ H m]	0,00		
φ [°]=	24		φ [°]=			
γ [daN/mc]=	2100		γ [daN/mc]=			
c [daN/cmq]=	0,2		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ=	0,45		μ=	0,00		
z [m] =	10,00		z [m] =	20,00		
Carico limite ve	rticale per ATTR	ITO LATERA	LE con formule	statiche		
TRASCURANDO	_	O DI PALO				
Q _{lim} =	$\Sigma(\Delta \mathbf{L} \mathbf{x} \Delta \mathbf{H} \mathbf{x} au)$					
Δ L	$\pi x d_{foro}$	Circonferen	za micropalo			
τ =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale		
k =	Coefficiente en	npirico dipen	dente dalle mod	dalità di esed	cuzion	e del palo
μ=	tan $arphi$	Coefficiente	e di attrito			
NELLA VALUTAZ	ZIONE DEL CARIO	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI	MICROPAL
STRATO 1	267884	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-119591	daN	
STRATO 3	0	daN	R _{d,lat} compres=	131963	daN	
тот.	267884	daN				
Carico limite ve						
Q _{lim} =	$\Sigma(N_{c}xc+N_{q}x\sigma,$,)xA				
φ ' ₁ [°]=	21		φ' ₂ [°]=	-3		
Nc1 =	14,1		Nc2 =	0		
Nq1 =	7,26		Nq2 =	0		
STRATO 1	376469					
	0	daN	_	450400	al c N	
STRATO 2	^					
STRATO 2 STRATO 3	0 376469	daN	R _{d,punta} =	158180	uain	


prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	/ERIFICHI	GEOTECN	ICHE- Pa	rametri m	inimi			
Spess. $[\Delta \text{H m}]$ 20,00 Spess. $[\Delta \text{H m}]$ 0,00 φ [°]= 22 φ [°]= φ [°]= φ [6]= φ [7]= φ								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- U.A. ALTER	ATA		2 -				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pess. [Δ H m]	20,00		Spess. [Δ H m]	0,00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[°]=	22		φ [°]=				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[daN/mc]=	2100		γ [daN/mc]=				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[daN/cmq]=	0,1		c [daN/cmq]=				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=	0,40		k =	0,50			
Carico limite verticale per ATTRITO LATERALE con formule statiche TRASCURANDO IL PRIMO METRO DI PALO $Q_{lim} = \sum (\Delta Lx\Delta Hx au)$ $\Delta L \qquad \pi x d_{foro} \qquad Circonferenza micropalo$ $ au = kx\sigma_v x \mu \qquad resisteza di attrito tangenziale$ $k = \qquad Coefficiente empirico dipendente dalle modalità di esecuzione del parte di attrito metro di anni metro di attrito metro di anni metro$	ι=	0,40		μ=	0,00			
TRASCURANDO IL PRIMO METRO DI PALO $Q_{lim} = \sum \left(\triangle Lx \triangle Hx \tau \right) \\ \triangle L \qquad \forall x x d_{foro} \qquad \text{Circonferenza micropalo} \\ \tau = \qquad kx \sigma_{v} x \mu \qquad \text{resisteza di attrito tangenziale} \\ k = \qquad \text{Coefficiente empirico dipendente dalle modalità di esecuzione del partico di attrito} \\ NELLA VALUTAZIONE DEL CARICO LIMITE SI TRASCURA IL PRIMO METRO DI MICROFISTRATO 1 243094 daN \text{STRATO 2} \qquad 0 \qquad \text{daN} \qquad \text{R}_{d,lat} \text{ trazione} = -125565 \text{ daN} \\ \text{STRATO 3} \qquad 0 \qquad \text{daN} \qquad \text{R}_{d,lat} \text{ compres} = 138554 \text{ daN} \\ \text{TOT.} \qquad 243094 \qquad \text{daN} \qquad \text{R}_{d,lat} \text{ compres} = 138554 \text{ daN} \\ \text{Carico limite verticale DI PUNTA} \\ Q_{lim} = \qquad \sum \left(N_{c}xc + N_{q}x\sigma_{v} \right) xA \qquad $	[m] =	10,00		z [m] =	20,00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	arico limite v	erticale per ATTF	RITO LATERA	LE con formule	statiche			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RASCURANDO) IL PRIMO METF	O DI PALO					
$ \tau = \begin{array}{c ccccccccccccccccccccccccccccccccccc$	l _{lim} =	$\Sigma(\Delta \mathbf{L} \mathbf{x} \Delta \mathbf{H} \mathbf{x} au)$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	L	π xd _{foro}	Circonferen	nza micropalo				T
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	=	Coefficiente en	npirico dipen	pirico dipendente dalle modalità di esecuzione del palo)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L=	tan $arphi$	Coefficient	e di attrito				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ELLA VALUTA	ZIONE DEL CARI	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI I	MICROPA	LO
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	STRATO 1	243094	daN					
TOT. 243094 daN Carico limite verticale DI PUNTA $Q_{lim} = \sum (N_c x c + N_q x \sigma_v) x A$ $\varphi'_2 [°] = -3$ $\varphi'_1 [°] = 19$ $\varphi'_2 [°] = -3$ Nc1 = 12,1 Nc2 = 0 Nq1 = 5,9 Nq2 = 0 STRATO 1 293823 daN STRATO 2 0 daN	STRATO 2	2 0	daN	R _{d,lat} trazione=	-125565	daN		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STRATO 3	0	daN	R _{d,lat} compres=	138554	daN		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOT	243094	daN					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \varphi'_{1}[°] = 19 $								
Nc1 = 12,1 Nc2 = 0 Nq1 = 5,9 Nq2 = 0 STRATO 1 293823 daN STRATO 2 0 daN	lim =	$\Sigma(N_{c}xc+N_{q}x\sigma)$	_v)xA					
Nq1 = 5,9 Nq2 = 0 STRATO 1 293823 daN STRATO 2 0 daN) ' ₁ [°]=	19		φ' ₂ [°]=	-3			
STRATO 1 293823 daN STRATO 2 0 daN	c1 =	12,1		Nc2 =	0			I
STRATO 2 0 daN	q1 =	5,9		Nq2 =	0			
STRATO 2 0 daN								1
								-
311A1O3 Udin				D -	1/20/0	daN		+
TOT. 293823 daN				'\d,punta'	142040	uaiv		+

ARMATURA AGGIUNTIVA IN TESTA AI PALI

La platea, realizzata in calcestruzzo armato, presenta uno spessore di 150 cm ed una larghezza di 680 cm. Il modello di calcolo usato per la verifica è a traliccio di Morsch:

Il valore dello sforzo normale massimo agente sul palo è di 187008 daN.

ARMATUR	A IN TESTA	A PALI						
Il calcolo viene condotto considerando un comportamento a traliccio di Morsch								
f _{yk} [daN/cm ²]	4500,00							
$\gamma_{s} =$	1,15							
f _{yd} [daN/cm ₂]	3913,04							
A_{res} [cm ²] =	47,79		8⊉22+4⊉ :	26 [51,65]				

La platea è armata con $7\Phi22$ al metro lineare, in testa ai pali si ha una armatura di $8\Phi22$ che viene integrata con una armatura aggiuntiva di 4⊕26.

VERIFICA ANCORAGGIO TIRANTE A TREFOLI 22

Metodo di Bustamante-Doix			
Massima azione di progetto al metro lineare di parete	P _{dAL M} [daN]	21127	
Interasse tiranti	i [m]	2,5	
Azione di progetto sul tirante	P _d [daN]	52817,5	TIRANTE A 6 TREFOLI
Coeff parziale resistenza ancoraggi	γ̃Ra,p	1,2	Tab 6.6.I
Peso Terreno	γ_t [kg/m ³]	2050	
Diametro nominale foro	d _h [m]	0,22	
Resistenza media	$(R_{a,c})_{medio}$ [daN/m ²]	15000	Da rel. geotecnica
Resistenza minima	(R _{a,c}) _{min}	13000	Da rel. geotecnica
numero di profili di indagine	ξ _{a3}	1,6	Tab 6.6.III
numero di profili di indagine	ξ _{a4}	1,55	Tab 6.6.III
Resistenza caratteristica	R _{ak} [daN/m ²]	8387	
Resistenza di progetto	$R_{ad} = R_{ak}/\gamma_R$ [daN/m2]	6989	
Lunghezza Fondazione	L [m]	18	
alfa (IRS)		1,15	fat. increment. dip. dall'insta
Capacità limite dell'insieme terreno-tirante	T [daN]	99994	ОК

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

23 VERIFICA ANCORAGGIO BARRE DYWIDAG

Metodo di Bustamante-Doix			
Massima azione di progetto	P _d [daN]	17945	
Interasse tiranti	i [m]	2,5	
Azione di progetto sul tirante	P _d [daN]	44862,5	
Coeff parziale resistenza ancoraggi	γ _{Ra,p}	1,2	
Peso Terreno	γ_t [kg/m ³]	2050	
Diametro nominale foro	d _h [m]	0,11	
Resistenza media	$(R_{a,c})_{medio}$ [daN/m ²]	15000	
Resistenza minima	(R _{a,c}) _{min}	13000	
numero di profili di indagine	ξ _{a3}	1,6	
numero di profili di indagine	ξ _{a4}	1,55	
Resistenza caratteristica	R _{ak} [daN/m ²]	8387	
Resistenza di progetto	$R_{ad} = R_{ak}/\gamma_R \text{ [daN/m2]}$	6989	
Lunghezza Fondazione	L [m]	22	
alfa (IRS)		1,15	
Capacità limite dell'insieme terreno-tirante	T [daN]	61107	OK

MURO TIPOLOGIA F - TRATTO 1

24 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La modellazione della struttura, dei materiali e i carichi applicati sono quelli riportati nei paragrafi 24 e 25 della relazione di calcolo.

25 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 3.40 m si ha:

PALO	N [daN]	M [daNm]
Combo 6	163286 [compres]	178874
Combo 3	105516 [compres]	- 240295

26 CAPACITA' PORTANTE DEI PALI

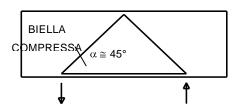
I pali presentano un diametro di 120 cm e una lunghezza di 20,00 m, sono inseriti per la loro intera lunghezza all'interno dell'Unità di S. Maria di Ciciliano (U.S.M.C.).

La capacità portante del palo in condizioni di progetto è pari a:

PORTANZA DI PROGETTO	Rc,k =	298052 daN
	Rt,k =	-217243 daN

Confrontando la portanza di progetto con i valori delle sollecitazioni agenti sul palo maggiormente sollecitato nelle diverse combinazioni di carico si osserva che la verifica risulta soddisfatta.

Coefficienti usati per la valutazione della portanza di progetto:


VERIFICHE	GEOTECN	ICHE- Pa	rametri m	edi		
1 - U.S.M.C.			2 -			
Spess. [Δ H m]	20,00		Spess. [Δ H m]	0,00		
φ [°]=	24		φ [°]=			
γ [daN/mc]=	2100		γ [daN/mc]=			
c [daN/cmq]=	0,2		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ=	0,45		μ =	0,00		
z [m] =	10,00		z [m] =	20,00		
Carico limite ve	rticale per ATTR	RITO LATERA	LE con formule	statiche		
TRASCURANDO	IL PRIMO METR	O DI PALO				
Q _{lim} =	$\Sigma(\Delta Lx \Delta Hx au)$					
Δ L	π xd _{foro}	Circonferen	za micropalo			
Τ=	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale		
k =	Coefficiente empirico dipendente dalle modalità di esecuzione del palo					
μ=	tan $arphi$	Coefficiente	di attrito			
NELLA VALUTAZ	ZIONE DEL CARIO	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI	MICROPAL
STRATO 1	267884	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-153077	daN	
STRATO 3	0	daN	R _{d,lat} compres=	166388	daN	
тот.	267884	daN				
Carico limite ve	rticale DI PUNT	A				
Q _{lim} =	$\Sigma(N_{c}xc+N_{q}x\sigma,$	_v)xA				
φ' ₁ [°]=	21		φ' ₂ [°]=	-3		
Nc1 =	14,1		Nc2 =	0		
Nq1 =	7,26		Nq2 =	0		
STRATO 1	376469	daN				
STRATO 2	0	daN				
STRATO 3	0	daN	R _{d,punta} =	199190	daN	
тот.	376469	daN				

dott. geol. Luca Domenico Venanti

VERIFICHE	GEOTECN	ICHE- Pa	rametri m	inimi		
1 - U.A. ALTERA	ATA		2 -			
Spess. [Δ H m]	20,00		Spess. [Δ H m]	0,00		
φ [°]=	22		φ [°]=			
γ [daN/mc]=	2100		γ [daN/mc]=			
c [daN/cmq]=	0,1		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ =	0,40		μ=	0,00		
z [m] =	10,00		z [m] =	20,00		
Carico limite ve	rticale per ATTR	RITO LATERA	LE con formule	statiche		
TRASCURANDO	IL PRIMO METR	O DI PALO				
Q _{lim} =	$\Sigma(\Delta Lx \Delta Hx au)$					
Δ L	$\pi x d_{foro}$	Circonferer	nza micropalo			
Τ =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale		
k =	Coefficiente en	npirico diper	ndente dalle mod	dalità di esed	cuzion	e del palo
μ=	tan $arphi$	Coefficient	e di attrito			
NELLA VALUTAZ	ZIONE DEL CARIO	CO LIMITE S	I TRASCURA IL P	RIMO METR	ODI	MICROPAL
STRATO 1	243094	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-160723	\vdash	
STRATO 3	0	daN	R _{d,lat} compres=	174699	daN	
тот.	243094	daN				
	rticale DI PUNT					
Q _{lim} =	$\Sigma(N_{c}xc+N_{q}x\sigma)$	_v)xA				
φ'_1 [°]=	19		φ' ₂ [°]=	-3		
Nc1 =	12,1		Nc2 =	0		
Nq1 =	5,9		Nq2 =	0		
CTD ATO 1	202022	daN				
STRATO 1 STRATO 2	293823	daN				
JINAIUZ	U	uaiv				

ARMATURA AGGIUNTIVA IN TESTA AI PALI

La platea, realizzata in calcestruzzo armato, presenta uno spessore di 150 cm ed una larghezza di 680 cm. Il modello di calcolo usato per la verifica è a traliccio di Morsch:

ASTA TESA

Il valore dello sforzo normale massimo agente sul palo è di 163286 daN.

ARMATUR	A IN TESTA	A PALI					
Il calcolo viene condotto considerando un comportamento a traliccio di Morsch							
f _{yk} [daN/cm ²]	4500,00						
$\gamma_s =$	1,15						
f _{yd} [daN/cm ₂]	3913,04						
$A_{res} [cm^2] =$	41,73		8⊕18+5⊕ :				

La platea è armata con $7\Phi18$ al metro lineare, in testa ai pali si ha una armatura di $8\Phi18$ che viene integrata con una armatura aggiuntiva di $5\Phi26$.

MURO TIPOLOGIA F - TRATTO 2

27 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La modellazione della struttura, dei materiali e i carichi applicati sono quelli riportati nei paragrafi 29 e 30 della relazione di calcolo.

28 SOLLECITAZIONI DI VERIFICA

PALO

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 3.00 m si ha:

PALO	N [daN]	M [daNm]
Combo 3	72238 [compres]	63834
Combo 6	102342 [compres]	61905

29 CAPACITA' PORTANTE DEI PALI

I pali presentano un diametro di 80 cm e una lunghezza di 15,00 m, sono inseriti per la loro intera lunghezza all'interno dell'Unità di S. Maria di Ciciliano (U.S.M.C.).

La capacità portante del palo in condizioni di progetto è pari a:

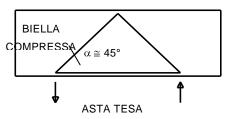
PORTANZA DI PROGETTO	Rc,k =	106413 daN
	Rt,k =	-59214 daN

Confrontando la portanza di progetto con i valori delle sollecitazioni agenti sul palo maggiormente sollecitato nelle diverse combinazioni di carico si osserva che la verifica risulta soddisfatta.

Coefficienti usati per la valutazione della portanza di progetto:

VERIFICHE	GEOTECN	ICHE- Pa	rametri m	edi		
1 - U.S.M.C.			2 -			
Spess. [Δ H m]	15,00		Spess. [Δ H m]	0,00		
φ [°]=	24		φ [°]=			
γ [daN/mc]=	2100		γ [daN/mc]=			
c [daN/cmq]=	0,2		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ=	0,45		μ=	0,00		
z [m] =	7,50		z [m] =	15,00		
Carico limite ve	rticale per ATTR	RITO LATERA	LE con formule	statiche		
TRASCURANDO	IL PRIMO METR	O DI PALO				
Q _{lim} =	$\Sigma(\Delta {\sf Lx} \Delta {\sf Hx} au)$					
Δ L	auxd _{foro}	Circonferen	za micropalo			
Τ =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	attrito tangenzi	ale		
k =	Coefficiente empirico dipendente dalle modalità di esecuzione del palo					
μ=	tan $arphi$	Coefficiente	di attrito			
NELLA VALUTAZ	ZIONE DEL CARIO	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI	MICROPAL
STRATO 1	98694	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-56397	daN	
STRATO 3	0	daN	R _{d,lat} compres=	61301	daN	
тот.	98694	daN				
Carico limite ve	rticale DI PUNTA	A				
Q _{lim} =	$\Sigma (N_c x c + N_q x \sigma,$	_v)xA				
φ' ₁ [°]=	21		φ' ₂ [°]=	-3		
Nc1 =	14,1		Nc2 =	0		
Nq1 =	7,26		Nq2 =	0		
STRATO 1	129022	daN				
STRATO 2		daN				
STRATO 3	0	daN	R _{d,punta} =	68265	daN	
тот.	129022	daN				

prof. ing. Claudio Comastri dott. ing. Rodolfo Biondi


dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

VERIFICHE	GEOTECN	ICHE- Pa	rametri m	inimi		
1 - U.A. ALTERA	TA		2 -			
Spess. [△H m]	15,00		Spess. [Δ H m]	0,00		
φ [°]=	22		φ [°]=			
γ [daN/mc]=	2100		γ [daN/mc]=			
c [daN/cmq]=	0,1		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ=	0,40		μ =	0,00		
z [m] =	7,50		z [m] =	15,00		
Carico limite ve	rticale per ATTR	ITO LATERA	LE con formule	statiche		
	IL PRIMO METR					
Q _{lim} =	$\Sigma(\Delta Lx \Delta Hx au)$					
Δ L	π xd _{foro}	Circonferen	za micropalo			
τ =	$\mathbf{k} \mathbf{x} \sigma_{\mathbf{v}} \mathbf{x} \mu$	resisteza di	attrito tangenzi	ale		
k =	Coefficiente en	npirico dipen	dente dalle mod	dalità di esed	uzion	e del palo
μ=	tan $arphi$	Coefficiente	di attrito			
NELLA VALUTAZ	ZIONE DEL CARIO	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI I	MICROPAI
STRATO 1	89561	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-59214	daN	
STRATO 3	0	daN	R _{d,lat} compres=	64363	daN	
тот.	89561	daN				
	rticale DI PUNTA					
Q _{lim} =	$\Sigma (N_{c}xc+N_{q}x\sigma,$,)xA				
φ ' ₁ [°]=	19		φ' ₂ [°]=	-3		
Nc1 =	12,1		Nc2 =	0		
Nq1 =	5,9		Nq2 =	0		
STRATO 1	99464					
STRATO 2	-	daN	D -	C0000	ala N'	
STRATO 3		daN	R _{d,punta} =	60890	dain	
TOT.	99464	aan				

ARMATURA AGGIUNTIVA IN TESTA AI PALI

La platea, realizzata in calcestruzzo armato, presenta uno spessore di 100 cm ed una larghezza di 680 cm. Il modello di calcolo usato per la verifica è a traliccio di Morsch:

Il valore dello sforzo normale massimo agente sul palo è di 102342 daN.

ARMATUR	A IN TESTA	A PALI					
Il calcolo viene condotto considerando un comportamento a traliccio di Morsch							
f _{yk} [daN/cm ²]	4500,00						
γ_s =	1,15						
f _{yd} [daN/cm ₂]	3913,04						
A_{res} [cm ²] =	26,15		5⊕18+3⊕	26 [28,65]			

La platea è armata con $7\Phi18$ al metro lineare, in testa ai pali si ha una armatura di $5\Phi18$ che viene integrata con una armatura aggiuntiva di $3\Phi26$.

MURO TIPOLOGIA F - TRATTO 3

30 SCHEMATIZZAZIONE DELLA STRUTTURA E DEI VINCOLI

La modellazione della struttura, dei materiali e i carichi applicati sono quelli riportati nei paragrafi 34 e 35 della relazione di calcolo.

31 SOLLECITAZIONI DI VERIFICA

Considerando che i pali sono posti ad un interasse in direzione longitudinale di 5.10 m si ha:

PALO	N [daN]	M [daNm]
Combo 3a	71058 [compres]	44355
Combo 3b	56115 [compres]	-47507

32 CAPACITA' PORTANTE DEI PALI

I pali presentano un diametro di 80 cm e una lunghezza di 15,00 m, sono inseriti per la loro intera lunghezza all'interno dell'Unità di S. Maria di Ciciliano (U.S.M.C.).

La capacità portante del palo in condizioni di progetto è pari a:

PORTANZA DI PROGETTO	Rc,k =	106413 daN
	Rt,k =	-59214 daN

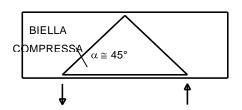
Confrontando la portanza di progetto con i valori delle sollecitazioni agenti sul palo maggiormente sollecitato nelle diverse combinazioni di carico si osserva che la verifica risulta soddisfatta.

Coefficienti usati per la valutazione della portanza di progetto:

VERIFICHE	GEOTECN	ICHE- Pa	rametri m	edi		
_						
1 - U.S.M.C.			2 -			
Spess. [Δ H m]	15,00		Spess. [Δ H m]	0,00		
φ [°]=	24		φ [°]=			
γ [daN/mc]=	2100		γ [daN/mc]=			
c [daN/cmq]=	0,2		c [daN/cmq]=			
k =	0,40		k =	0,50		
μ=	0,45		μ =	0,00		
z [m] =	7,50		z [m] =	15,00		
	rticale per ATTR	ITO LATERA				
TRASCURANDO	IL PRIMO METR	O DI PALO				
Q _{lim} =	$\Sigma(\Delta Lx \Delta Hx au)$					
Δ L	π xd _{foro}	Circonferen	Circonferenza micropalo			
τ =	$\mathbf{k} \mathbf{x} \sigma_{\mathbf{v}} \mathbf{x} \mu$	resisteza di	resisteza di attrito tangenziale			
k =	Coefficiente en	empirico dipendente dalle modalità di esecuzione del palo				
μ=	tan $arphi$	Coefficiente di attrito				
NELLA VALUTAZ	ZIONE DEL CARIO	CO LIMITE SI	TRASCURA IL P	RIMO METR	O DI	MICROPA
STRATO 1	98694	daN				
STRATO 2	0	daN	R _{d,lat} trazione=	-56397	daN	
STRATO 3	0	daN	R _{d,lat} compres=	61301	daN	
тот.	98694	daN				
Carico limite ve	rticale DI PUNT	A				
Q _{lim} =	$\sum (N_c x c + N_q x \sigma,$,)xA				
φ' ₁ [°]=	21		φ' ₂ [°]=	-3		
Nc1 =	14,1		Nc2 =	0		
Nq1 =	7,26		Nq2 =	0		
STRATO 1	129022					
STRATO 2		daN				
STRATO 3		daN	R _{d,punta} =	68265	daN	
тот.	129022	daN				

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi


dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

VERIFICHE	GEOTECN	ICHE- Pa	rametri m	inimi			
							П
1 - U.A. ALTERA	ATA		2 -				
Spess. [Δ H m]	15,00		Spess. [Δ H m]	0,00			
φ [°]=	22		φ [°]=				
γ [daN/mc]=	2100		γ [daN/mc]=				
c [daN/cmq]=	0,1		c [daN/cmq]=				Т
k =	0,40		k =	0,50			
μ=	0,40		μ=	0,00			
z [m] =	7,50		z [m] =	15,00			
Carico limite ve	rticale per ATTR	RITO LATERA	LE con formule	statiche			
TRASCURANDO	IL PRIMO METR	O DI PALO					
Q _{lim} =	$\Sigma(\Delta$ Lx Δ Hx $ au$)						
Δ L	π xd _{foro}	Circonferen	Circonferenza micropalo				Г
Τ =	$\mathbf{k}\mathbf{x}\sigma_{\mathbf{v}}\mathbf{x}\mu$	resisteza di	resisteza di attrito tangenziale				
k =	Coefficiente en	pirico dipendente dalle modalità di esecuzione del palo					
μ=	tan φ	Coefficiente	Coefficiente di attrito				
NELLA VALUTAZ	ZIONE DEL CARI	CO LIMITE SI	TRASCURA IL P	RIMO METR	ODIN	/ICROPAI	0.
STRATO 1	89561	daN					П
STRATO 2	0	daN	R _{d,lat} trazione=	-59214	daN		
STRATO 3	0	daN	R _{d,lat} compres=	64363	daN		
тот.	89561	daN					
	rticale DI PUNT						
Q _{lim} =	$\Sigma(N_{c}xc+N_{q}x\sigma)$	_v)xA					
φ ' ₁ [°]=	19		φ' ₂ [°]=	-3			
Nc1 =	12,1		Nc2 =	0			
Nq1 =	5,9		Nq2 =	0			
							L
STRATO 1	99464						1
STRATO 2		daN					L
STRATO 3		daN	R _{d,punta} =	60890	daN		L
тот.	99464	daN					

ARMATURA AGGIUNTIVA IN TESTA AI PALI

La platea, realizzata in calcestruzzo armato, presenta uno spessore di 100 cm ed una larghezza di 600 cm. Il modello di calcolo usato per la verifica è a traliccio di Morsch:

ASTA TESA

Il valore dello sforzo normale massimo agente sul palo è di 71058 daN.

ARMATUR	A IN TESTA	A PALI					
Il calcolo viene condotto considerando un comportamento a traliccio di Morsch							
f _{yk} [daN/cm ²]	4500,00						
$\gamma_s =$	1,15						
f _{yd} [daN/cm ₂]	3913,04						
$A_{res} [cm^2] =$	18,16		5 ⊕18+2⊕	26 [23,32]			

La platea è armata con $7\Phi18$ al metro lineare, in testa ai pali si ha una armatura di $5\Phi18$ che viene integrata con una armatura aggiuntiva di $2\Phi26$.

MURO TIPOLOGIA F - TRATTO 4

Viene realizzato come il muro tipologia F tratto 2, poiché presenta stesso spessore della parete, ma con una altezza del muro e larghezza della soletta a sbalzo inferiori.

MURI DI CIGLIO

33 VERIFICA DI RESISTENZA MICROPALI

Il carico massimo sul micropalo, dovuto al peso della platea e al momento indotto dalle spinte sul muro di sostegno è pari a:

 $N_{ED} = 33080 \text{ daN}$

Essendo l'armatura del micropalo costituita da tubi in acciaio FE510 di diametro esterno 114.3 mm e spessore 10 mm si ricava:

 $N_{c,Rd} = 110726 \text{ kg/cm}^2$.

Progettista:

Prof. Ing. Claudio Comastri

RELAZIONE SINTETICA DEGLI ELEMENTI ESSENZIALI DEL PROGETTO STRUTTURALE

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

1 PREMESSA

La presente relazione si inserisce nell'ambito del progetto esecutivo degli interventi di consolidamento parietale della rupe di Massa Martana; in particolare riguarda il completamento degli interventi in parete e del ciglio superiore nel tratto compreso tra via delle Piagge e via del Mattatojo Vecchio.

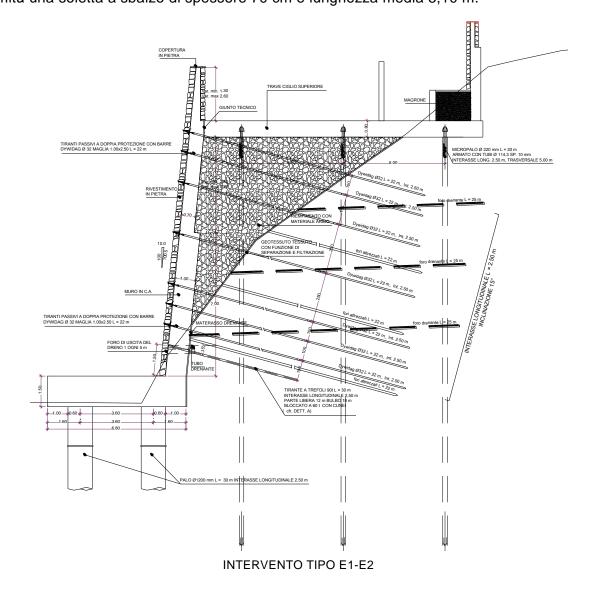
L'intervento di consolidamento, inserito all'interno di un articolato progetto di consolidamento della Rupe di Massa Martana e di recupero del centro storico, è concepito in maniera tale da conferire alle pareti Ovest e Nord della Rupe una continuità materiale e una maggiore stabilità di insieme.

In via preliminare è necessario procedere al diserbo e al taglio della vegetazione, alla demolizione dei massi rocciosi instabili e alla pulizia della parete. L'intervento di consolidamento prevede l'introduzione di iniezioni a bassa pressione e l'inserimento di barre metalliche, tese a saturare gli spazi e le cavità, senza imporre pressioni esterne, per conferire alla rupe una maggiore stabilità di insieme. Tiranti passivi sono stati previsti per ancorare la parte esterna consolidata al corpo interno della rupe e canne drenanti sono introdotte per mantenere l'equilibrio idraulico del sistema.

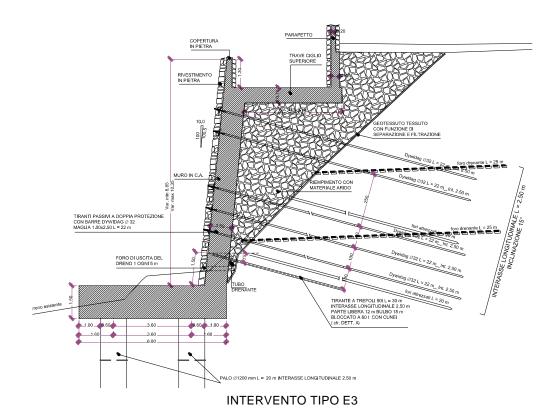
Gli interventi del presente appalto interessano un fronte di 112 m per un'altezza massima di 13 m. Gli interventi sono differenziati in due tipologie di consolidamento, denominate INTERVENTO TIPOLOGIA E ed INTERVENTO TIPOLOGIA F.

L' INTERVENTO TIPO E, si estende dalla sezione 43 alla sezione 53a.

L'intervento prevede la realizzazione di un muro in cemento armato, tirantato al piede da tiranti a trefoli di tipo attivo da 90 tonnellate e lunghezza 30 m, disposti ad interasse longitudinale di 2,5 m, il tiro di bloccaggio del tirante è di 60 t. Il muro è fondato su due file di pali del diametro di 120 cm, posti ad interasse trasversale di 3,60 m e longitudinale di 2,50 m; l'altezza massima del muro, escluso il parapetto, è h = 13,00 m. La platea di fondazione ha spessore 150 cm e larghezza 680 cm.


La parete in calcestruzzo viene ancorata alla rupe, con tiranti passivi realizzati con barre Dywidag da 32 mm lunghezza 22 m ed interasse longitudinale di 2,50 m.

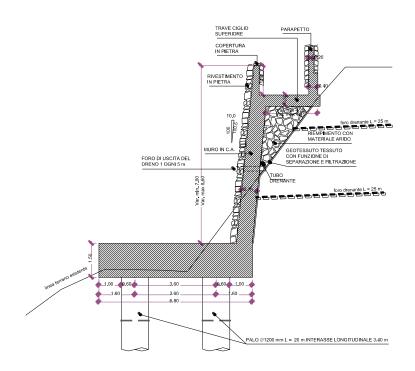
E' possibile individuare all'interno della tipologia E tre diversi tratti, che si differenziano tra loro per la lunghezza dei pali, il numero di file di tiranti passivi posti lungo la parete e lo spessore della parete:


- <u>TRATTO E1</u> [sez. 43 49a]: Altezza massima parete 12,70 m, altezza media 11.20 m, lunghezza pali 30,00 m, tiranti passivi n.7 file, spessore parete 100 cm alla base e 70 cm in sommità;
- <u>TRATTO E2</u> [sez. 49a 51a]: Altezza massima parete 12,00 m, altezza media 10,50 m, lunghezza pali 30,00 m, tiranti passivi n.5 file, spessore parete 100 cm alla base e 70 cm in sommità;

dott. ing. Giuseppe Federici dott. geol. Luca Domenico Venanti

- <u>TRATTO E3</u> [sez. 51a – 53a]: Altezza massima parete 9,05 m,altezza media 8,30 m, lunghezza pali 20,00 m, tiranti passivi n.5 file, spessore parete 100 cm. Questa tipologia di muro presenta in sommità una soletta a sbalzo di spessore 70 cm e lunghezza media 5,10 m.

dott. geol. Luca Domenico Venanti


Prima della costruzione del muro, la parete della rupe verrà consolidata con iniezioni ad alta pressione di malta cementizia realizzate mediante la predisposizione di canne in PVC valvolate di lunghezza 20 m e maglia 2,50x3,00, per la saturazione delle cavità e delle fratture.

L' INTERVENTO TIPO F, si estende dalla sezione 53a alla sezione 68a.

L'intervento prevede la realizzazione di un muro in cemento armato, fondato su due file di pali, in sommità è presente una soletta a sbalzo che costituisce il camminamento.

E' possibile individuare all'interno della tipologia F quattro diversi tratti, che si differenziano tra loro per diversi aspetti:

- <u>TRATTO F1</u> [sez. 53a 55a]: Altezza media parete 7,00 m, diametro pali 120 cm, lunghezza pali 20,00 m, interasse longitudinale pali 3,40 m, spessore parete 70 cm, larghezza media soletta a sbalzo 435 cm e spessore 50 cm;
- <u>TRATTO F2</u> [sez. 60 63a]: Altezza media parete 4,60 m, diametro pali 80 cm, lunghezza pali 15,00 m, interasse longitudinale 3,00, spessore parete 50 cm, larghezza media soletta a sbalzo 2.00 cm e spessore 40 cm;
- <u>TRATTO F3</u> [sez. 63a 66a]: Altezza media parete 2,90 m, diametro pali 80 cm, lunghezza pali 15,00 m interasse longitudinale 5,10 m, spessore parete 40 cm;
- <u>TRATTO F4</u> [sez. 66a 68a]: Altezza media parete 1,20 m, diametro pali 80 cm, lunghezza pali 15,00 m interasse longitudinale 3,60 m, spessore parete 40 cm, larghezza media soletta a sbalzo 100 cm e spessore 40 cm.

INTERVENTO TIPO F

Nel tratto compreso tra la sezione 55a e la sezione 60 è presente un muro già esistente, sul quale viene ancorata la soletta a sbalzo sulla quale è realizzato il camminamento e il relativo parapetto. Quando il muro è aderente alla parete della rupe si posiziona un materasso drenante con funzione di cassero; quando il muro si allontana dalla parete lo spazio viene riempito da materiale arido e la parete viene protetta con geotessuto con funzione filtrante e di separazione.

Il rivestimento in pietra esterno, dello spessore medio di 25 cm, viene sostenuto da cordoli rompitratta emergenti dalla struttura in cemento armato.

2 CARATTERISTICHE DEI MATERIALI

2.1 CALCESTRUZZO

	TIPO	Resistenza a compression $e \\ f_{ckcube}[N/mm^2]$	Classe di esposizio pne	Classe di consistenza	Minimo contenuto di cemento [kg/m³]	Rapporto a/c	Contenuto massimo di cloruri
Sottofondi	C12/15	≥ 15					
Pali	C25/30	≥ 30	XC2	S4	300	<0.60	CI 0.2
Altre opere	C28/35	≥ 35	XC2	S4	320	<0.55	CI 0.2

Diametro massimo dell'inerte 25 mm.

2.2 ACCIAIO DA CEMENTO ARMATO

TIPO	Tensione caratteristica di snervamento $f_{yk}[\text{N/mm}^2]$	Allungamento (A _{gt}) _k [%]	Diametro del mandrino
B450C	≥ 450	≥ 7.50	per Φ<12 mm 4 Φ per 12<Φ<16mm 5 Φ per 16<Φ<25mm 8 Φ

Minimo ricoprimento ferro: 40 mm.

2.3 ACCIAIO PER STRUTTURE METALLICHE E STRUTTURE COMPOSTE

- Acciai laminati a caldo con profili a sezione cava ai sensi delle NORME UNI EN 10210-1:

TIPO	Tensione caratteristica di snervamento f _{yk} [N/mm²]	Tensione caratteristica di rottura f _{yk} [N/mm²]	Spessore
S355H	355	510	t <= 40 mm
000011	335	490	40 mm < t <= 80 mm

2.4 Barre tipo DYWIDAG:

Chiodi tipo DYWIDAG 950/1050 N/mm² a doppia protezione:

432 mm qualità dell'acciaio 950/1050 N/mm²

Carico di snervamento: 760 kN

Carico di rottura: 850 kN.

Ancoraggio definitivo e provvisorio	Ancoraggio	definitivo e	provvisorio
-------------------------------------	------------	--------------	-------------

tipo di barra	diametro	qualità del	carico di	carico
upo di barra	nominale	acciaio	snervamento	ultimo
	mm	N/mm²	kN	kN
	26.5	950/1050WR	525	580
THREADBAR® barra	32	950/1050WR	760	850
a filettatura continua	36	950/1050WR	960	1,070
destrorsa	40	950/1050WR	1,190	1,320
	47	950/1050WR	1,648	1,822

2.5 TIRANTI

Tiranti da 90 t di tipo permanente con trefoli $A_{nom} = 139 \text{ mm}^2$.

Miscele di iniezioni a base di boiacca acqua/cemento (a/c=0,50) additivata contro il ritiro.

3 APPROCCIO DI CALCOLO

3.1 MURO TIPOLOGIA E

Dal momento che si tratta di muri con fondazioni profonde e parete ancorata la verifica deve essere condotta seguendo le indicazioni riportate nella tabella successiva:

FONDAZIONI PROFONDE E PARETE ANCORATA		STABILITA' GLOBALE MURO- TERRENO	1	C2: A2+M2+R2	
	GEO	CARICO LIMITE DELLA PALIFICATA PER CARICHI ASSIALI	1		
		CARICO LIMITE DELLA PALIFICATA PER CARICHI TRASVERSALI		APP. 1: C1[STR]: A1+M1+R1 C2[GEO]: A2+M ₂ +R2	
		CARICO LIMITE DI SFILAMENTO PER CARICHI ASSIALI DI TRAZIONE			
	STR	RESISTENZA ELEMENTI STRUTTURALI (PALI E STRUTTURA DI COLLEGAMENTO)	(PALI E		
	GEO	SFILAMENTO ANCORAGGIO	2	C1:A1+M1+R3	

All'interno di questa relazione vengono condotte le verifiche di resistenza degli elementi strutturali, attraverso la **combinazione 1 dell'approccio 1**.

- VERIFICHE DI SICUREZZA
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali,
 - raggiungimento della resistenza degli elementi strutturali.

sono condotte secondo l'approccio 1: COMBINAZIONE 1 (A1+M1+R1).

La verifica di stabilità globale del complesso opera di sostegno-terreno è riportata nella relazione geotecnica.

Le verifiche geotecniche:

- palificata secondo l'approccio 1, attraverso la combinazione 2 (A2+M1+R2),
- sfilamento degli ancoraggi secondo l'approccio 2 combinazione (A1+M1+R3).

3.2 MURO TIPOLOGIA F

Dal momento che si tratta di muri con fondazioni profonde e pareti non ancorate la verifica deve essere condotta seguendo le indicazioni riportate nella tabella successiva:

		STABILITA' GLOBALE MURO- TERRENO	1	C2: A2+M2+R2
FONDAZIONI PROFONDE E PARETE NON ANCORATA	GEO	CARICO LIMITE DELLA PALIFICATA PER CARICHI ASSIALI CARICO LIMITE DELLA PALIFICATA PER CARICHI TRASVERSALI CARICO LIMITE DI SFILAMENTO PER CARICHI ASSIALI DI TRAZIONE	1 OVVERO 2	APP. 1: C1[STR]: A1+M1+R1 C2[GEO]: A2+M1+R2 OVVERO APP.2: C1 [GEO/STR]: A1+M1+R3
	STR	RESISTENZA ELEMENTI STRUTTURALI (PALI E STRUTTURA DI COLLEGAMENTO)		er [626/311]. ATTWITES

Le verifiche STR e GEO vengono effettuate considerando **l'approccio 2**, ovvero un'unica combinazione di carico **A1+M1+R3**.

4 MODELLO DI CALCOLO

4.1 MURO TIPOLOGIA E

state realizzate due diverse modellazioni con il codice di calcolo WinStrand 2010-031 prodotto da En.Ex.Sys s.r.l..

In entrambi i casi la struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

- elementi verticali "pilastro": Sez. 1 Muro di base, Sez. 2 muro in sommità;
- elementi orizzontali con vincolamento interno tipo "biella": Sez. 1 Tirante realizzato con trefoli in acciaio; Sez. 2 Tirante in Dywidag.

I modelli sono sottoposti ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

La differenza tra i due modelli sta nel vincolamento esterno:

1- in un primo modello è stata simulata la presenza della trave di fondazione, per mezzo di un elemento beam; la quale è vincolata all'esterno attraverso due aste, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono disposte delle molle orizzontali che simulano

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

la presenza del terreno, il quale è caratterizzato da una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della profondità. Per la valutazione delle caratteristiche geometriche della molla, che simulasse correttamente il comportamento del terreno, è stata imposta l'uguaglianza tra la sua deformazione assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella. Sul retro della parete sono inserite delle aste, vincolate all'esterno per mezzo di incastri e con comportamento a biella, che simulano la presenza dei tiranti passivi (barre dywidag) e del tirante formato da sei trefoli da 15 t ciascuno (90t). Al tirante da 90 tonnellate viene applicato un tiro permanente attivo di 60 t;

2- in un secondo modello non è simulata la trave di fondazione e i pali, ma soltanto la parete verticale che è vincolata alla base in modo da evitare movimenti di traslazione verticale, lasciando libera la traslazione orizzontale, tutti gli altri nodi del muro non presentano vincolamenti esterni. Questo modello viene usato per valutare la fase passiva di lavoro del tirante a trefoli posto alla base della parete.

4.2 MURO TIPOLOGIA F

La struttura è stata schematizzata con un modello piano composto da elementi bidimensionali di tipo FRAME:

elementi verticali "pilastro": Sez. 1 - Muro di base, Sez. 2 - Muro di sommità

Il modello è sottoposto ai carichi statici previsti dalla normativa vigente, per quanto riguarda l'azione sismica è stata valutata con metodo pseudo statico (par. 7.11.6.2.1 NTC08).

Il vincolamento esterno è simulato dalla presenza della trave di fondazione, per mezzo di un elemento beam; la quale è vincolata all'esterno attraverso due aste, che simulano i due pali. Lungo l'asse dei pali ad interasse di un metro sono disposte delle molle orizzontali che simulano la presenza del terreno, il quale è caratterizzato da una costante di sottofondo orizzontale pari a 5 kg/cm³, supposta costante al variare della profondità. Per la valutazione delle caratteristiche geometriche di una molla che simulasse correttamente il comportamento del terreno è stata imposta l'uguaglianza tra la sua deformazione assiale e quella del terreno, sotto l'azione di una forza unitaria. Le molle sono state vincolate all'esterno con degli incastri ed è stato imposto un comportamento a biella.

5 MODELLAZIONE DEI MATERIALI

I materiali sono considerati con comportamento elastico lineare in particolare:

Cls armato pali

 E_c = 315 000 daN/cm² per Rck \geq 300 daN/cm²

Cls armato fondazione e parete

 E_c = 336 000 daN/cm² per Rck \geq 350 daN/cm²

INTERVENTO DI CONSOLIDAMENTO PARIETALE DELLA RUPE DI MASSA MARTANA – Completamento degli interventi in parete e del ciglio superiore nel tratto compreso tra Via delle Piagge e Via del Mattatoio vecchio

Pagina 187 di 191

Acciaio $E_a = 2 100 000 \text{ daN/cm}^2$

6 AZIONE SISMICA

Le azioni sismiche vengono valutate con analisi pseudo statica mediante metodi dell'equilibrio limite, come previsto nel par.7.11.6.2.1 delle NTC 08.

L'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

6.1 MURO TIPOLOGIA E

Nel nostro caso il muro non è in grado di subire spostamenti relativi rispetto al terreno, pertanto:

- il coefficiente βm =1,00;
- l'incremento di spinta dovuta al sisma va applicato a metà altezza del muro.

2		Zona sismica
С		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long.
		12,523762 °]
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione
		orizzontale
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]
k _V	0.161	[Coefficiente sismico per sisma verticale]

6.2 MURO TIPOLOGIA F

Nel nostro caso, a favore di sicurezza, si suppone:

- il coefficiente $\beta m = 1,00$;
- l'incremento di spinta dovuta al sisma applicato a metà altezza del muro.

2		Zona sismica
В		Categoria del suolo
T2		Categoria topografica
V _T >=	50 anni	Vita nominale della struttura
C _u =	1.5	Coefficiente d'uso – Classe d'uso: III
a _g [SLV]	0,189 g	Accelerazione al suolo [Massa Martana - Lat. 42,777501 °- Long.
		12,523762 °]
F ₀ [SLV]	2,467	Valore massimo fattore amplificazione Spettro accelerazione
		orizzontale
T _c * [SLV]	0,321	Periodo inizio tratto velocità costante Spettro accelerazione orizzontale
S _T =	1.2	Coefficiente di amplificazione topografica
S _S =	1.42	Coefficiente di amplificazione stratigrafica
a _{max}	0.322 g	Accelerazione orizzontale massima attesa al sito
βm	1.00	Coefficiente di riduzione della accelerazione massima attesa al sito
k _h	0.322	[Coefficiente sismico per sisma orizzontale]
k _V	0.161	[Coefficiente sismico per sisma verticale]

7 COMBINAZIONI DI CARICO

7.1 MURO TIPOLOGIA E

- MODELLO 1: VERIFICHE STR

	Commento	PPR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	1,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	1,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	1,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	1,	1,	0,6

MODELLO 2: VERIFICHE STR

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	STR1	1,	1,	0,	0,	0,	0,	0,	0,
2	STR 2	1,	1,	1,5	0,	0,	0,	0,	1,5
3	STR3	1,3	1,3	1,5	0,	0,	0,	0,	1,5
4	STR S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	STR S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	STR S3	1,	1,	1,	1,	0,	0,	1,	0,6

- MODELLO 1: VERIFICHE GEO

prof. ing. Claudio Comastri

dott. ing. Rodolfo Biondi

dott. ing. Giuseppe Federici

dott. geol. Luca Domenico Venanti

	Commento	P PR	SP TER	P POR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	1,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	1,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	1,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	1,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	1,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	1,	1,	0,6

- MODELLO 2: VERIFICHE GEO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER+	TIRO	SISMA VER -	Q SOMMITA'
1	GEO1	1,	1,	0,	0,	0,	0,	0,	0,
2	GEO 2	1,	1,	1,3	0,	0,	0,	0,	0,
3	GEO 3	1,	1,	1,3	0,	0,	0,	0,	1,3
4	GEO S1	1,	1,	1,	1,	0,	0,	0,	0,6
5	GEO S2	1,	1,	1,	1,	1,	0,	0,	0,6
6	GEO S3	1,	1,	1,	1,	0,	0,	1,	0,6

7.2 MURO TIPOLOGIA F

- VERIFICHE STR E GEO

	Commento	P PR	SP TER	PPOR	SISMA_ORIZ	SISMA VER +	Q_SOMMITA'	SISMA VER -
1	1	1,	1,	0,	0,	0,	0,	0,
2	2	1,	1,	1,5	0,	0,	0,	0,
3	3	1,3	1,3	1,5	0,	0,	1,5	0,
4	S1	1,	1,	1,	1,	0,	0,6	0,
5	S2	1,	1,	1,	1,	1,	0,6	0,
6	S3	1,	1,	1,	1,	0,	0,6	1,

8 RISULTATI DELLE ANALISI

I risultati delle analisi sono riportati all'interno della relazione di calcolo rispettivamente alle pagine:

- TIPOLOGIA E – TRATTO 1:

VERIFICHE STR: pag. 41 VERIFICHE GEO: pag. 144

TIPOLOGIA E – TRATTO 2:

VERIFICHE STR: pag. 59 VERIFICHE GEO: pag. 154

- TIPOLOGIA E - TRATTO 3:

> VERIFICHE STR: pag. 80 VERIFICHE GEO: pag. 162

TIPOLOGIA F – TRATTO 1:

VERIFICHE STR: pag. 98 VERIFICHE GEO: pag. 166

TIPOLOGIA F – TRATTO 2:

VERIFICHE STR: pag. 112 VERIFICHE GEO: pag. 169

- TIPOLOGIA F - TRATTO 3:

VERIFICHE STR: pag. 124 VERIFICHE GEO: pag. 172

- TIPOLOGIA F TRATTO 4:
- Viene realizzato come il muro tipologia F tratto 2, poiché presenta stesso spessore della parete, ma con una altezza del muro e larghezza della soletta a sbalzo inferiori.
- MURI DI CIGLIO:

VERIFICHE STR: pag. 129 - 175

Progettista:

Prof. Ing. Claudio Comastri